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Zusammenfassung 
In der Software Industrie werden Anwendungen des maschinellen Lernens seit längerer Zeit eingesetzt, 
eines der Probleme dabei ist, dass dafür oft Spezialisten benötigt werden. Eine einfach zu verwendende und 
erweiterbare Bibliothek für maschinelles Lernen würde vielen Software Entwicklern den Einstieg in diese 
Thematik erleichtern. In dieser Arbeit wurde eine Software Bibliothek für maschinelles Lernen entwickelt, 
aufgeteilt in eine saubere Software Architektur nach den Bedürfnissen des maschinellen Lernens. Zusätzlich 
wurden im Rahmen dieser Arbeit Interfaces mit Standard Funktionen für einfache Textklassifikations 
Aufgaben entwickelt und an mehreren Datensets getestet, weiter wurden Anleitungen zur Erweiterung und 
Nutzung des Frameworks erarbeitet. Das Resultat ist ein robuster und erweiterbarer Kern, sowie ein 
Domänen spezifisches Modul zur Textklassifikation. 

  



Abstract 
For quite some time now machine learning has been of great importance in the software development 
industry, however it’s also a very demanding and complicated subject. Providing an easy to use software 
library with strong extensibility would make machine learning much more accessible to software developers 
new to the topic. To do this, this project offers a software library that is divided not only by the principle of 
clean software architecture but also by knowledge requirements in terms of machine learning. Similarly it 
offers a guided approach to solving machine learning tasks and extending the framework that is reflected in 
both its software architecture and the best practice guidelines proposed in this document. The results show 
a framework with a strong extensible core and problem domain specific modules which allow to tackle 
different machine learning tasks with the structurally same approach.  
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1 Introduction 
Machine learning has become more and more important along with the advance of Big Data. Many 
applications like search and recommendation engines, NLP and speech recognition have shown its practical 
usability. Google uses machine learning algorithms in their search engine. YouTube, Amazon, Netflix and 
many more make use of such techniques in their recommendation engines. With the growing amount of data 
available, manual programming is often just not possible anymore. 
However many existing solutions are either highly specific in the machine learning tasks they can solve, only 
offer a collection of learning algorithms or have a system integration intended for people with a great deal of 
knowledge of machine learning.  
With rising demand for machine learning solutions not every software developer can be an expert in machine 
learning and the time of experts should be used as efficiently as possible. In this project we wanted to design 
a machine learning library that can be integrated by a layman in the field and fine-tuned by an expert later. 
To achieve this we imposed a very strict pattern on how machine learning tasks should be approached to 
allow extension and customization by someone with very little expertise in machine learning with the 
appropriate specification. 
 
This project deals with the design and implementation of a machine learning software library and requires 
knowledge in the Java programming language, software architecture and machine learning. 
 
This work is based on a codebase taken from “Development of a framework for text classification and 
participation at SemEval.” [1] It was an entry to the Semeval 2015 contest. This code however had some 
flaws and as such our goals are twofold. For one redesign the framework with the above problem in mind 
and two, optimize the code for improved runtime performance. 
 

1.1 Goals 
In this section we describe the goals we set for PlebML at the start of the project. Some are technical, some 

relate to usability. 

1. There should be default configurations and default workflows such that the framework can be used 
by someone with very little or no expertise in machine learning. The usage should consist of only 
very few lines of code. 
 

2. In comparison to our codebase, performance should be improved, both in terms of RAM usage and 
elapsed runtime.  
 

3. The software architecture needs to be overhauled as the separation of concern is weak, the 
interfacing has issues, extending the framework is very cumbersome and implementing a wide 
variety of tasks is very hard. 
 

4. Designing best practices for various workflows concerning the extension and customization of 

PlebML itself. Part of designing certain extensions is providing the needed code to satisfy goal 1. 
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1.2 User Stories and Purpose of PlebML 
PlebML is intended to give software developers with very limited knowledge of machine learning access to a 
full-fledged machine learning tool. To keep the requirements of machine learning low we impose a structured 
approach to solve a machine learning task and divide the extensibility of PlebML along certain knowledge 
levels. This structure will be topic of discussion in the “Software Architecture” chapter. To cite the “Getting 
Started with PlebML” [2] guide of PlebML: 
 

“What is PlebML? 

PlebML is an easily extensible machine learning framework intended to give various levels of interaction 
needing different levels of machine learning expertise ranging from novice (should know what features are 
and what training and prediction is) to expert. PlebML is made up of three parts. The Core Library which 
contains the actual machine learning algorithms and wrapper to machine learning libraries, as well as  various 
utilities, interfaces and abstract classes needed by the second part.  
Core Modules provide modular functionality for a specific kind of machine learning tasks such as our stock 
module for text classification. A Core Module contains the class responsible for a sensible representation of 
the raw data within the system as well as the actual features and some other things which will be discussed 
below. Extending and creating these Core Modules is one of the main topics of this guide.  
The third and easiest part of PlebML are Tasks. Tasks consist of two parts. One is the handling and importing 
of the raw data until it can be handed to a Core Module. The second part is interaction with a Core Module ’s 
Pipeline and Builders. It is also the topic of the BASIC level chapters in this guide.” [2] 
 
To further specify our goals we defined a set of user stories. They also show how typical use cases for 
PlebML.  
 

- As a software developer tasked with implementing machine learning in an existing software project, 
I want to be able to seamlessly integrate an existing configuration of the library without having to 
configure the machine learning part of the library itself. 

o Using the stock text classification configuration of PlebML to compete in a Kaggle or 
Semeval competition. 

o Or to implement a spam filter for a mail server. 
o Or sort news article by topic. 

 
- As a machine learning expert I want to be able to extend this library to fulfil a wide variety of different 

machine learning tasks. 
o Extending the existing text classification module with new features to handle non-English 

languages or non-Latin alphabets better. 
o Adding a new module to handle picture recognition or any other non-text based machine 

learning task. 
 

- As a software developer when integrating the library I don’t want to be forced to implement all the 
existing code. I want to be able to only import what I need. The library should be modular. 

o When doing a text classification task, I should not have to have superfluous code dealing 
with picture recognition or vice versa. 

 
- As a software developer I want to be able to integrate the library into an existing machine learning 

environment to either take over feature vector generation or machine learning. 
o When using Spark MLib or the Google Prediction API or something similar I can use the 

feature vector generation mechanism of PlebML to generate the vectors needed by those 
library. 

o Or the other way around, if I have feature vectors already I should be able to use the machine 
learning component of PlebML without having to use the feature vector generation 
previously. 

 
- As a software developer I want to be given a set of guideline on how to extend PlebML as well as 

best practices to conform to. 
o When designing a new module or additions I should have a reference stating clearly what 

those additions should fulfil.  
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1.3 Differentiation from Existing Solutions 
Initially when looking for other existing solutions we only looked for text classification tools. However we 
quickly decided to generalize PlebML to accomplish other tasks as well. As such the comparison between 
those tools and PlebML is in regards to the stock configuration of PlebML which includes text classification 
capability. To get a more general comparison we also picked several state-of-the-art machine learning tools. 
 

- MALLET [3] 
MALLET is a software library for a wide variety of text analysis. 
 
“MALLET is a Java-based package for statistical natural language processing, document 
classification, clustering, topic modelling, information extraction, and other machine learning 
applications to text.” [3] 
 
It offers both an API and a command line tool. In some points we have similar architecture. MALLET 
generates feature vectors by passing the initial raw data through a pipeline made up of serially called 
components. PlebML offers a similar approach but is strongly structured and made up of configurable 
stages in the pipeline instead of single components. MALLET represents the read raw data within a 
predefined class. This is done because MALLET only deals with Text. PlebML can be extended to 
deal with a wide variety of raw data and as such can use any class to represent imported raw data. 
 

- DKPro [4] 
Again like MALLET, DKPro deals with text analysis only. 
 
“We present DKPro TC, a framework for supervised learning experiments on textual data. The main 
goal of DKPro TC is to enable researchers to focus on the actual research task behind the learning 
problem and let the framework handle the rest.” [5]  
 
DKPro can build on top of several other frameworks including MALLET, Liblinear and Weka. One 
major point of DKPro is a workflow which ensures that all experiments are fully replicable. This is a 
feature not given in PlebML. With this it differs in the primary use case for PlebML being integration 
into a surrounding project and for DKPro being experimental work. 
 

- RTextTools [6] 
RTextTools is written in the programming language R. This language is mostly used for statistics. 
This already changes certain approaches to data handling as PlebML is written in Java. It focuses 
on text classification with nine different algorithms and offers a nine step workflow on how to get to 
a trained model and use that. This makes it very different from PlebML which builds on the idea of 
task specific modules with an overarching static workflow on how problems should be approached. 
Much like DKPro it is meant to be used as standalone software not to be integrated into existing 
projects.  
 

- Google Prediction API [7] 
The Google Prediction API is a cloud based RESTful API for a variety of machine learning tasks. 
Training data can be uploaded and then be trained on the Google cloud, after that the resulting model 
can be queried for prediction results. The uploaded training data consists of an expected prediction 
result and a feature vector made up of numeric or text features. If only given the raw data the user 
has to make his own feature extraction. As such this API could be plugged into PlebML as a machine 
learning component. 
 

- Amazon ML Service [8] 
Amazon ML Service is a cloud based API for various machine learning tasks. Users have to upload 
training data in a CSV file afterwards the web interface transformations, like splitting up address 
strings in more meaningful features (ZIP, state etc.), to the data can easily be applied and finally 
there is a support in the feature selection based on the training data provided by the user, but only 
basic features like n grams are implemented, complex features like dictionaries have to be applied 
externally. The Amazon ML Service could be used in PlebML as a machine learning component, in 
this way the easy extraction of advanced features in PlebML would be combined with the cloud based 
machine learning API of Amazon. 

  



Differentiation from Existing Solutions  Introduction 

Arnold Marek & Egger Dominic  PlebML P a g e  9 | 68 

- Knime [9] 
Knime is an open source analytics platform written in Java. It is heavily modularized and extensible 
to suit a huge variety of tasks. Knime offers a graphical interface to setup workflows easily and 
through plugins for specific task categories like text classification specialized features are available. 
Furthermore the modular design allows the use of a variety of open source libraries within Knime 
and to extend it as needed. Its main disadvantage in contrast to PlebML is the lack of default 
workflows for given sets of problems, and therefore some knowledge about machine learning is 
required to get any useful results. 
 

- Scikit-learn [10] 
Scikit-learn is an open source machine learning project written in Python that is built on NumPy, 
SciPy, and matplotlib. Its API offers a variety of methods for supervised and unsupervised training 
and further it offers pipelines to simplify workflows. Some basic mechanics for the feature extraction 
and the transformation of the resulting feature vectors are implemented, but advanced features like 
dictionaries are not included. The main advantage of PlebML compared to scikit-learn is the variety 
of implemented features for text classification. 
 

- Spark MLib [11] 
Spark MLib by Apache is part of the spark cluster computing system. It does not contain a full suite 
of functionalities for feature vector generation. Instead it focuses on the learning algorithms and utility 
side of things. As such it could be plugged into PlebML as a machine learning component. While it 
does have some feature extractors for text (such as TF-IDF and Word2Vec) it does not have any 
means for text segmentation. Instead they refer to Stanford’s NLP Work. Comparing the existing 
machine learning part of PlebML (A modified version of Liblinear [12]) Spark MLib offers functionality 
that Liblinear does not, such as dimensionality reduction. PlebML offers those functionalities either 
by itself or does not need them as of now. 
 

- Apache Mahout [13] 
Apache Mahout is a suit of machine learning libraries. It offers a huge variety of machine learning 
functions and provides high scalability for some tasks with Hadoop. The focus of the suit is to provide 
highly scalable and robust machine learning algorithms but it does not provide direct support for the 
feature vector generation. The main disadvantage of Mahout is its complexity, which leads to a huge 
initial effort when using Mahout. Additionally to generate feature vectors external tools have to be 
used. Apache Mahout could be integrated in PlebML as a highly scalable machine learning 
component to provide the variety of Mahouts algorithms with the simplicity of PlebML. 
 

- Weka 3 [14] 
Weka is a collection of machine learning algorithms for data mining tasks written in Java. The main 
goal of the Weka project is to make machine learning algorithms publicly available. As Apache 
Mahout, Weka 3 does not offer direct support for the feature extraction, but it could be integrated in 
PlebML as a machine learning component. 
 

- Gate [15] 
The Gate product family is a set of frameworks, “It is specifically targeted at NLP tasks including text 
classification, chunk learning (e.g. for named entity recognition) and relation learning.” [16] The 
implemented feature extraction mechanisms and the machine learning algorithms are configurable 
via a configuration file, further many functionalities are available via plugins. For the machine learning 
Gate integrates LibSVM and it offers and interface to Weka. The disadvantage of Gate is the huge 
configuration file needed for complex tasks which makes it difficult for inexperienced users. 
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2 Software Architecture 
In this chapter the software architecture and modularization concept of both, the logical and the source code 

level are explained. It also shows how various core concepts of PlebML are separated and interact with each 

other. 

PlebML has two different levels of modularization. The first that will be laid out in this section deals with the 
logical separation of parts, this separation is intended to give a structured way to solve a machine learning 
task. The second level of separation deals with how the source code is distributed in packages and deals 
with more technical questions such as reusability and separation of concern. 
 

2.1 Logical Separation of PlebML 
There are three distinct parts in the logical separation that are intended to give a structured approach to solve 
a machine learning task with PlebML as shown in Figure 1. 

 
Figure 1 - Schematic of an abstract workflow 
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2.1.1 Feature Vector Generation 
One of the primary challenges in machine learning is the generation of feature vectors. We decided to 
implement an extensible mechanic of successive stages to model the process of feature vector generation. 
The depiction above shows data and call flow in an abstract workflow over the whole of PlebML ’s logical 
separation. 
Feature vector generators are instantiated by a factories that extend an abstract class. These builders allow 
extensive configuration for each stage of the vector generation and system options such as parallelization. 
 

- Import 
The Import stage retrieves raw data or raw training data from a specified location. This raw data can 
be anything but has to be consistent with what the preprocessor and the features in the later stages 
expect. The training data that an Importer can provide always consists of a raw data entry and an 
expected prediction result. 
 

- Preprocessing 
The preprocessor expects raw data of the same type as the Importer imported. Its primary 
responsibility is to transform the raw data into a more meaningful format, clean it up and enrich it 
with additional data. For example in our text classification module we split the raw String into 
paragraphs, sentences and tokens, then reduce unneeded data (such as URLs or email addresses) 
and finally add data needed for feature extraction such as negation or lemmatization. The result of 
the preprocessor is a specific model object. In our text classification module this would be an object 
of the Document class.  
 

- Feature Extraction 
The feature extraction receives model objects generated by the preprocessor and extracts features 
from it. It is configured by passing it a number of instances of classes that extend the IFeature 
interface and their respective configuration objects. How to exactly set this up and extend it will be 
covered in a later chapter. This stage will result in either a list of vectors or a list of pairs of vectors 
and expected prediction results, depending on whether training data was imported or regular raw 
data.  
 

- Postprocessing 
The postprocessing stage serves to model processes like scaling or extracting statistical data from 
the generated vectors. Depending on what is done with the resulting vectors afterwards this stage is 
entirely optional and can be left out. 
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2.1.2 Machine Learning Component 
The machine learning component is where the actual training and prediction happens. It can be anything 
from a wrapper for a library (like our implementation of Liblinear) to an entirely new self-written solver 
implementation or a new wrapper for another machine learning solution like Google Prediction API. It consists 
of three abstraction levels. This is meant to be able to construct different levels of generalizations of Pipelines. 
 

- 1. Interface Functionality 
This is the most abstract level of requirements a machine learning component has to satisfy. It 
consists of an interface with the method signatures of training, prediction, loading an already trained 
component and saving a trained component. It does not contain any default implementations. 
 

- 2. Kind of machine learning Task 
On this abstraction level different kinds of machine learning tasks can be differentiated. For instance 
classification-tasks or regression-tasks. This layer serves to make generalized implementations of 
certain algorithms (i.e. scoring for this sort of task) available that still can be overwritten in the actual 
specific implementation. All Classes on this layer should be abstract. 
 

- 3. Specific Implementation 
In this layer are the actual implementations of the interface methods and possibly overwritten 
methods of the abstract superclass. 

 
In most cases an abstract class (for instance text classifier) implements the machine learning component 
interface and an actual implementation (in our case the wrapper for the Liblinear library) extends this abstract 
class. This would allow to write algorithms specific to classification or text classification on the abstract class 
and swap the actual machine learning component beneath while keeping the abstract class constant. One 
example for such algorithms could be scoring. This can be forgone in case of a highly specific machine 
learning component by only implementing the interface.  
 

2.1.3 Pipelines as Workflow Collections 
Pipelines are the primary mean to interact with the mechanics of PlebML. They are meant to offer a variety 
of workflows that span over the other two components of the framework. They can range from a highly 
abstract pipeline that requires a complete configuration to very specific pipeline that already contains 
preconfigured feature vector generation and a specific implementation of a machine learning component. 
Below are two examples of an abstract and a very specific pipeline. 
 

- Abstract Pipeline 
An abstract pipeline offers only rudimentary functionality as it is only allowed to operate on the 
abstract layers of PlebML. Within the Machine learning component it only operates on the interface 
functionality, at most on the kind of machine learning task layer (it’s possible to write a generic 
classification pipeline like that). As for the feature vector generation it should accept a configured 
generator in its constructor. As for a concrete example refer to the class 
ch.zhaw.init.plebml.coreLibrary.Pipeline.  
 

- Specific Pipeline 
A specific Pipeline operates on a specific implementation of a machine learning component and on 
a specific builder. This allows for far more concrete workflows to be built on the pipeline but severely 
restricts its general applicability. For an example of a concrete pipeline refer to the class 
ch.zhaw.init.plebml.coreModules.textclassification.BasicTextclassificationpipeline. 

 
Pipelines can be circumvented by the user. For instance if the feature vectors are already generated by 
another system they can still be used in PlebML however then only the machine learning components are 
useful. Or the other way around if the user wishes to use the feature vectors in another machine learning 
environment they can be exported. This means the machine learning components don’t need to be 
instantiated. In such cases circumventing the pipelines makes sense as it would generate overhead with no 
gain as the workflows provided by it would include not needed components of PlebML. 
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2.2 Source Code Modularization 
In this section we describe the different classes and interfaces and how they are separated from each other.  
This section is made up of three sub-sections discussing the three distinct parts of PlebML. Those three parts 
are the Core Library, Core Modules and Tasks. The Core Library is responsible for the machine learning 
algorithms, feature indexing, interfaces and abstract classes dictating the structure of the next part. The Core 
Modules are problem domain specific modules which contain things as the model object class representing 
the data within PlebML, the features which are extracted from that data as well as other components further 
discussed in the Core Module chapter. Tasks are responsible for System integration and interacting with the 
Core Modules. 

2.2.1 Core Library 
The core library constitutes functionality that is constant across any use-case for PlebML. It also structures 
any built core module (core modules will be shortly explained in a paragraph below) by imposing a set of 
restrictions with interfaces and abstract classes. Some best practices when building a core module cannot 
be enforced within the code itself. Those guidelines are described in the next chapter. The relations between 
the Core Modules and the Core Library are shown schematically in Figure 2. The relations between the Core 
Modules themselves will be explained in further detail in the Core Modules. 
 

 
Figure 2 - Core Module Dependencies 

 

2.2.1.1 A Short Note on Core Modules 
As described the Core Library consist of abstract functionality and many things are only defined in from of 
interfaces, generics and abstract classes. For instance the data types of the raw input provided by the 
importer or the model object class are such things. Also the core library does not include any implementation 
of features. Core Modules are packages designed to handle a specific sort of machine learning task such as 
text classification and they contain all the actual implementations required by the core library, handle all the 
generics in the vector generation chain and offer sensible pipelines.  
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2.2.1.2 Feature Vector Generation 

Abstract Builders 
A builder is responsible for constructing a feature vector generator according to its settings. In the core library 
it only exists as an abstract class and it needs to be specified in each core module. This is because the 
builder also entails settings for the preprocessor which are specific to each core module. However having 
this abstract class ensures a consistent structure for builders in every core module. 
 
As seen in Figure 3 on the next page the structure of the builder is similar to a folder structure. Each separate 
stage in the feature vector extraction process has its own object holding its settings. Each Class that extends 
the AdvancedSubOption Class has a make method which generates a part needed to build the feature vector 
generator. Also using a method on these Option Classes will return the same object again, allowing to chain 
the method calls. This results in very compact and readable code configuring the builder. 
 
Also this graphic shows what is implemented on the abstract layer in the core library and what has to be 
extended in each core module. 
 
Please note that Figure 3 is not an exhaustive class diagram but should only show the structure imposed for 
the builders by the core library. 
 

 

Figure 3 - Builder interaction 
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Importer Interfaces and Data Structures 
Importers serve as interface between PlebML and physical storage, providing data needed for training and 
prediction alike. 
The import package consists of the Importer interface and the TrainingData data structure. The Importer 
interface consists of two methods that have to be implemented: 
Iterator<TrainingData<RawDataType, PredictionType>> importTrainingSetFromFile(String 

path); 

Iterator<RawDataType> importDataToClassifyFromFile(String path); 

 
There are also methods that support (String… paths) signatures. They are implemented per default using 
iterator concatenation. It is advised to overwrite them if there is a more performant way to handle these calls. 
 
This Interface requires the first two generics of PlebML specifying the raw data type being imported and the 
intended result type of prediction.  
 
The TrainingData Class is very simple and consists of an object of the raw data type and its expected 
prediction result. 
 

Preprocessing Interfaces and Utilities 
The preprocessor is responsible to convert the raw data provided by an importer to a meaningful object type 
on which the features can operate efficiently at a later stage. On an abstract level the preprocessor consist 
of the IPreprocessor interface and the IPreprocesorComponent interface. Furthermore the model object 
specified in the Core module should implement the IPreprocessorDataReciever interface but more to that in 
a later chapter. 
While the IPreprocessor is responsible for the complete construction of a model object it is made up of 
separate steps called IPreprocesorComponent. These components should structure the raw data in a 
meaningful way and write pertinent metadata on the resulting object. The preprocessing step finally results 
in a new object of the ModelObjectType which is a generic, guaranteeing type consistency between 
preprocessor and used features. 
 
The IPreprocessor interface consists of the following methods: 
public ModelObjectType preprocess(RawDataType data); 

public void loadComponents(Class<? extends IPreprocessorComponent>... components); 

public void loadComponent(IPreprocessorComponent component, String identifier); 

default public void unInitialize(){} 

 
 
The preprocess method is the main part of this Interface. It should invoke all components that got loaded by 
dependency crawling done by the preprocessor options on the builder or that were added by the user. 
As the preprocessor is implemented in the core module the next chapter will deal with best practice and 
design recommendations for preprocessor and model object classes. 
 
The loadComponent methods are needed by the dependency crawling and should always be supported in 
any preprocessor. If that is not possible a runtime exception is to be thrown, informing the user to disable the 
dependency crawling in the builder settings. 
 
The uninitialized method is implemented per default to do nothing. It is called once the preprocessing stage 
is complete and should clean up any physical resources required by the preprocessor. 
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The IPreprocessorComponent interface consists of these methods: 
public void setIdentifier(String identifier); 

public String getIdentifier(); 

 

default boolean isGlobal() 

{ 

    return this.getIdentifier()==null; 

} 

 
There are two different kind of preprocessor components. There are global components, of there only one 
per class exists and their results are shared between all feature implementations. The data provided by these 
components can be retrieved by class. The other kind of component is the named one, the data of these 
components can be retrieved with their identifier. Most components should be global but there are cases 
where different feature implementation require the same class of preprocessor component to have run but 
with different settings. This mechanism allows to account for that use case. 
 
The IPreprocessorDataReciever is the interface intended for the model object class. It allows for abstract 
interaction between the preprocessor and model object. It consists of these methods: 
public void acceptDataFromGlobalComponent 

(Class<? extends IPreprocessorComponent> component, Object data); 

 

public void acceptDataFromNamedComponent 

(IPreprocessorComponent component, String identifier, Object data); 

 

public <V> V getDataFromGlobalComponent 

(Class<? extends IPreprocessorComponent<V>> component); 

 

public <V> V getDataFromNamedComponent(String identifier); 

 

These methods allow preprocessor components to write data on these objects. Features can then later 
retrieve the necessary data from the object. 
 
The preprocessor core package also contains the class PreprocessorComponentSuperclass which offers 
some method implementations that are helpful. However using this superclass means that class inheritance 
is used instead of interface implementation.  
 
The most important feature on the PreprocessorComponentSuperclass is the following method: 
protected void setDataOnReceiver(IPreprocessorDataReceiver receiver, Object data) 

 
This method automatically handles the distinction of global and named components when setting data on an 

IPreprocessorDataReceiver.  
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FeatureVectorGenerator 
The FeatureVectorGenerator handles the dataflow during feature extraction, the imported data is lazily 
transformed by the preprocessor. Subsequently all features are applied on the preprocessed data. The 
extraction is done by the FeatureExtractor and afterwards the generated feature vectors are postprocessed. 
The parallelism during the extraction is configurable via the ParallelisationStrategy and the memory 
management through the MemoryStrategy. The different stages are described in the following chapters. 
 

Public Methods 
The FeatureVectorGenerator offers several public methods that allow to extract features for different 
purposes as shown in Table 1. 
 
 Store new indices Discard new indices 

Labelled 
data 

Supervised Training 
generateLabelledFeatureVectors() 

Evaluation 
generateLabelledFeatureVectorsDiscardingNewIndices() 

   
Unlabelled 
data 

Unsupervised Training 
Not implemented 

Prediction 
generateFeatureVectorsDiscardingNewIndices() 

Table 1 - FeatureVectorGenerator method overview 

 
When generating labelled feature vectors the FeatureVectorGenerator automatically removes duplicated 
vectors with the same or different labels.  
 

Parallelisation Strategies 
There are three strategies for parallelisation, so the resource consumption during the feature extraction can 
be adapted to the available hardware and other resource consuming tasks within the same JVM. The 
FeatureVectorGenerator is responsible to use the FeatureExtractor accordingly. The different strategies are 
described below, for the readability the names are shortened, SER stands for SERIAL, PAR for PARALLEL 
and FET for FEATURE. 
 
SER_DATA_SER_FET: Data models are processed serially and the features are applied serially as well. 
 
SER_DATA_PAR_FET: Data models are processed serially and the features are applied in a parallel 

manner. 
 
PAR_DATA_PAR_FET: Data models are processed in parallel, features implementing the interface 

ConcurrentHeavyLoadFeature or ConcurrentMidLoadFeature are applied on 
several documents at once, and all other features are still applied serially. 
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FeatureExtractor 
The FeatureExtractor extracts features for preprocessed documents, it offers several public methods for 
different levels of parallelisation as shown in Table 2 and the functionality of the methods is described in the 
following sub chapters. 
 Parallel Data Serial Data 

Parallel Features extractFeatureVectorConcurrent() extractFeatureVectorParallel() 
Serial Features  extractFeatureVectorSerial() 

Table 2 - FeatureExtractor method overview 

extractFeatureVectorSerial 
All features are applied serially. 

extractFeatureVectorParallel 
All features are applied in parallel using the parallel stream of Java 8. 

extractFeatureVectorConcurrent 
Before the first use of this function initializeConcurrentThreadPool() has to be called to initialize the thread 
pool that will extract the features concurrently and after the last call to extractFeatureVectorConcurrent() 
done() has to be called to shut down the thread pool. 
 
For the concurrent extraction of features a queue of data queues for each feature is maintained as illustrated 
in Figure 4. Simultaneously a map from data models to countdown latches is maintained.  
The worker threads in the thread pool take one data queue from the queue and apply the according feature 
to all data models in the queue serially, counting down the countdown latches of the according data models. 
Once the queue is empty it is put back on the queue of queues and the next one is polled. 

Queue of data queues for each feature

Data 1Data 2 Data 2 Data 3

Data 4 Data 4

Data 1

Data 2

Data 3

Data 4

Data 1

Data 3

Feature 3 - 3 Feature 3 - 2 Feature 3 - 1Feature 1 - 1 Feature 2 - 2 Feature 2 - 1
 

Figure 4 - Visualization of queues for concurrent feature extraction 

In Figure 4 an example for a queue of data queues is shown, where a total of three features and four data 
models are ready to be processed, Feature 2 implements the interface ConcurrentMidLoadFeature and 
Feature 3 implements the interface ConcurrentHeavyLoadFeature. 
 
A call to extractFeatureVectorConcurrent() first adds a mapping from the data model to be processed to a 
new countdown latch with the amount of features, in the example above this would be three, to the map of 
countdown latches. Next the data model is added to a queue of each feature, for features which have multiple 
queues the data models are distributed equally between all queues. Finally the caller waits for the countdown 
latch to reach zero. 

FeatureExtractorDiscardingNewIndices 
The FeatureExtractorDiscardingNewIndices extends. The FeatureExtractor the difference in their behaviour 
is that the FeatureExtractorDiscardingNewIndices uses a ConcurrentForgettingVectorSpace that discards 
any unknown indices.  
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VectorSpace 
The VectorSpace is responsible for the distribution of indices for the features and has to be capable of 
persisting the mappings of features to indices. Each mapping consists of two Strings for the key and an 
Integer for the value. The first part of the key (key1) is the full class name of the feature, the second one 
(key2) is an identifier provided by the feature. A part of the classes in the package vectorspace is shown in 
Figure 5, please note that this figure is for simplicity not complete. The two implementations of 
ConcurrentVectorSpace are ConcurrentPersistentVectorSpace which generates new indices and persists 
them and ConcurrentForgettingVectorspace which discards all unknown features. 

<<Interface>>

VectorSpace

store() : void
finalizeDocument() : SparseVector

finalizeVectorSpace() : int

extract() : double
extractOrElse() : double

isFinalized() : boolean
getBagOfIndices() : Map<String, Set<Integer>>

<<implements>>

<<abstract>>

ConcurrentVectorSpace

<<extends>>

ConcurrentPersistentVectorspace ConcurrentForgettingVectorspace

<<extends>>

<<Interface>>

Persistence

apply() : Integer
get() : Integer
containsKey() : boolean
getBiggestIndex() : int
close() : void
clear() : void

1 : 1

CachedPersistence

HeapLoadWorkStorePersistence

<<implements>>

CachedHashPersistence

MemoryMappedPersistence

<<implements>>

 
Figure 5 - Incomplete UML of ch.zhaw.init.plebml.vectorspace  
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Memory Strategies 
The memory strategy determines the persistence used by the VectorSpace. A persistence is responsible of 
persisting and generating key – index bindings for given keys, all strategies use the documented algorithm 
for String.hashCode() in Java 8 and a hardcoded algorithm for the hash code of a pair of Strings, which 
guarantees to get the same hash for the same string and string pair on all JVMs. The available strategies are 
described below. The two cached variants are based on the H2 database engines, accessed by hikari 
connection pools and wrapped by a cache implementation from the guava library. 
 

Normal Indexing 
This implementations store the full key pair along with the according index. 
 
HEAP: The VectorSpace is fully kept on heap as a two level map, to persist the 

VectorSpace a persistent map implementation of MapDB is used. This is the 
fastest strategy, but if not enough ram is available to keep the full map on the 
heap, this is not feasible. This behaviour is implemented by 
HeapLoadWorkStorePersistence. 

 
CACHED: To eliminate redundancy in the persisted data, two tables are used, table1 for 

key1 along with a unique id for this part of the key and table2 containing the 
unique id for key1, key2 and the mapped index. For index only lookups an 
index over all values of table2 is maintained (key1_id, key2, index). 

 To improve the concurrent performance and to reduce the used disk space 
several additional actions haven been performed: 

o The data is distributed over 64 databases with 1024 tables each, 
this greatly reduces the size of the table indices and improves 
concurrency as multiple threads can work on different tables. To 
distribute the entries among the different databases and tables, the 
hash of both key parts is used. 

o Locks on database level are disabled and replaced by in memory 
locks per table. 

 

Hashing Trick 
The “hashing trick” is described in many papers for example in a work by Joshua Attenberg [17], in PlebML 
the hashing trick is used in two implementations. These only store the hash of the key pair along with the 
according index. In the current implementations the amount of possible hashes is reduced by a modulo 

operation to 228. This greatly reduces the used disk space, but may result in the same index for different 
features when their hashes collide. 
 
CACHED_HASH: The data is stored in a table containing the hashes and the according indices. 

The table has an index over both columns. As in the CACHED implementation 
the data is distributed over several databases and tables to reduce the used 
disk space and to improve concurrent access, but as the mappings of hashes 
to indices need far less space, the amount of databases and tables is reduced 
to 32 databases and 128 tables per database. 

 
MEMORY_MAPPED_HASH: The VectorSpace consist solely of a flat dense array of indices saved in a file 

and mapped to memory, the size of the array is given by the number of 
possible hashes. The mapping to memory is done with a combination of a 
RandomAccessFile and several MappedByteBuffers. The size of a 
MappedByteBuffer is limited to Integer.MAX_VALUE bytes, to circumvent this 
limitation and to improve concurrent access 64 buffers are used. 

 This strategy has a constant access time for all keys, for small problems the 
drawback is the huge dense array resulting in increased disk consumption. 
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Postprocessing 
Postprocessing is applied on all feature vectors once all features are extracted in the training stage, 
afterwards it can be applied on single vectors independently. The PostProcessor itself is a wrapper for a 
bunch of PostProcessingFunctions. As of now only scaling functions are implemented as shown in Figure 6. 
 

<<Interface>>

PostProcessor

save() : void
load() : void

process() : void
initializePostProcessing() : void

PostProcessorScaler

<<implements>>

<<Interface>>

PostProcessingFunction

save() : void
load() : void

initialize() : void
process() : void

Sigmoid

<<implements>>

1 : *

1 : *

 

Figure 6 - UML of ch.zhaw.init.plebml.coreLibrary.postprocessing 

 

PostProcessorScaler 
The responsibility of the PostProcessorScaler is to handle a bunch of PostProcessingFunctions and to 
delegate the method calls accordingly. The PostProcessorScaler takes a map from feature classes to 
PostProcessingFunctions as an argument in the constructor, this mapping means that for a specific feature 
a specific function has to be applied. Each feature class can therefore have at most one function within a 
PostProcessorScaler. When the postprocessing gets initialized with initializePostProcessing() a map from 
feature classes to a set with the indices of that feature and a collection of feature vectors, the 
PostProcessorScaler simply calls initialize on all PostProcessingFunctions with the according set of indices 
and the feature vectors. 
 

PostProcessingFunction 
A PostProcessingFunction is responsible for a specific postprocessing task for example a sigmoid scaling. 
Before the first call to postprocess, the PostProcessor has to be initialized with a set of indices and a collection 
of feature vectors. PostProcessingFunction is responsible to save all data needed to process further feature 
vectors with a call to save. 
 

Sigmoid 
Sigmoid is a simple implementation of a PostProcessingFunction that applies a sigmoid scaling. As sigmoid 
scaling can be done on all values independently the sigmoid function only needs to store the set of indices it 
has to scale. 
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2.2.1.3 Machine Learning 
For the machine learning part there is a modified and wrapped version of the Liblinear port of Benedikt 
Waldvogel [18]. Several adaptions and optimizations were performed on the original library to greatly reduce 
memory consumption and to improve its architecture. Details about the modifications and wrappers follow 
next. 

Problem Representation 
Several flaws concerning the representation of a problem have been spotted and fixed. The changes made 
to the original library are described in the following chapters. 

Problem Interface 
The original implementation of the problem representation violated the clean code principles by granting 
public access to all its members. This made it impossible to easily use different implementations of problem 
representations. To solve this issue an interface for the representation has been introduced, which now offers 
public getter methods to access the data and all methods of Liblinear were adapted to the new interface, this 
allows for a far more flexible design of the problem implementation. 

Problem Memory Consumption 
The original problem representation used a two dimensional array of feature objects holding the index and 
the according value of this feature. For large problems this leads to a significant memory overhead due to 
the additional twelve bytes for each feature object.  
To eliminate this overhead a new implementation of the problem interface has been introduced. The original 
representation was modified to hold two two-dimensional arrays of primitives for the indices and values of 
the features. The link from index to value which was provided by the feature object is now given by the 
position in the arrays, so that the index[i][j] corresponds to the value[i][j]. 
 
To illustrate the reduction in memory consumption we calculate the memory consumption of an example 
problem with 20’000 observation points, 5000 features per observation. Please note that only parts that were 
changed are calculated. The calculations are shown in Table 3 and Table 4. 
 
The previous representation needed roughly: 
Description Size computation Result 

Array of observation point arrays 1 ∗ 12𝐵 + 4𝐵 = 16𝐵 16B 
Array per observation point 20′000 ∗ 12𝐵 ≅ 234𝐾𝐵  234KB 
Feature objects 5′000 ∗ 20′000 ∗ (12 +  8 +  4)𝐵 ≅ 2.2𝐺𝐵 2.2GB 

Total  2.2GB 
Table 3 - Memory calculation for the original problem 

The representation of the same problem with the new implementation needs roughly: 
Description Size computation Result 

Array of index arrays 1 ∗ 12𝐵 + 4𝐵 = 16𝐵 16B 
Array of value arrays 1 ∗ 12𝐵 + 4𝐵 = 16𝐵 16B 
Index array per observation point 20′000 ∗ 12𝐵 ≅ 234𝐾𝐵  234KB 
Value array per observation point 20′000 ∗ 12𝐵 ≅ 234𝐾𝐵  234KB 
indices 5′000 ∗ 20′000 ∗ 4𝐵 ≅ 381𝑀𝐵 318MB 
values 5′000 ∗ 20′000 ∗ 8𝐵 ≅ 763𝑀𝐵 763MB 

Total  1.1GB 
Table 4 - Memory calculation for the adapted problem 

So the effective memory consumption for the problem representation is roughly halved. This greatly improves 
the computation performance as well, as far less data has to be transferred between main memory and the 
processor. 

SubProblem 
To handle permutations to the original problem during the solve method, the SubProblem was introduced. It 
holds a reference to the original problem and applies the permutations lazily. 
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Multithreading 
The original implementation offered no help concerning out of memory errors while solving problems. This is 
especially important when multiple threads solve problems at the same time. For this purpose the HeapGuard 
has been implemented. Its responsibility is to stall threads that would require too much heap space to solve 
their problem and might result in an OutOfMemoryError (OOME). Further OOMEs during training, which may 
still appear due to heap fragmentation, are handled and the thread will automatically try to solve the problem 
again, once more heap is available. With the HeapGuard it is possible to work with as many threads as 
desired without the risk of an unhandled OOME that might harm the correctness of the execution. 

Listeners 
Two listeners have been introduced to grant the user some information about the progress during cross 
validation and about the actions of the HeapGuard. 

Liblinear Wrapper 
To conform to the MachineLearningComponent interface that is used within PlebML and to handle changes 
to the library interface in a single place the adapted Liblinear library is wrapped. In addition of handling the 
passing of method calls, the wrapper handles the listeners of Liblinear and converts their events to events 
on the event bus. 

Liblinear Factory 
The LiblinearMLComponentFactory offers several methods to easily find the best classifier for a given 
problem. This includes methods to find the best c for a given solver type and methods to find the best solver 
type and c. 

OptimizeOverC 
To find the best c for a given solver type within the provided c range the problem is solved and evaluated for 
c values in a logarithmic scale with the provided granularity as suggested in [19]. The method is overloaded 
to use cross validation or to evaluate against a static set and to use defaults for several parameters. 

OptimizeOverSolvers 
For this purpose a set of recommended c range and step size for each solver type were found by experiments 
on various datasets. To find the best solver over all solvers, every solver is tested with the method 
optimizeOverC and the recommended parameters. This allows users with no knowledge about the different 
solver types to find the best solver for their problem. 
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2.2.1.4 Event Bus System 
In PlebML all events are distributed over an event bus with a publish-subscribe pattern. Additionally to the 
EventBus there is an EventBusFactory to maintain a singleton per identifier. An incomplete UML figure of the 
event bus system is shown in Figure 7. 
 

EventBusFactory

static method:
getEventBus() : EventBus

<<Interface>>

Event

<<abstract>>

EventListener

abstract onEvent() : void

final handleEvent() : void

generic E extends Event

SpecificEvent

eventSpecificGetter() : Object

<<abstract>>

SpecificEventListener

abstract onEvent() : void

EventBus

post() : void

close() : void

addSystemOutEventBusListeners() : void
removeSystemOutEventBusListeners() : void

addEventListener() : void
removeEventListener() : void

 

Figure 7 - Incomplete UML figure of the event bus system 

Pros 
There are several benefits of using an event bus instead of the traditional listener pattern.  
First of all there are no listeners registered and wrapped along all levels of abstractions, which reduces the 
amount of code to write and maintain tremendously. For example to raise an event one can simply call post 
on the event bus with the according event as parameter, instead of writing fire methods on all levels of 
abstraction. 
Further there exists no hard wiring between the consumers and the producers of events, this allows a far 
more flexible software design and easier refactoring as far less dependencies have to be maintained. 

Con 
Many Java developers might be unfamiliar with the usage of a publish-subscribe pattern. 

Solutions 
To hide the publish-subscribe pattern from the developers, for each event an abstract EventListener is 
implemented so the developers only need to implement an onEvent() method of the according EventListener. 
  



Source Code Modularization  Software Architecture 

Arnold Marek & Egger Dominic  PlebML P a g e  25 | 68 

2.2.2 Core Modules 
Core Modules are packages designed to solve a particular kind of machine learning problem. As an example 
we implemented a text classification core module. Core modules deal with the feature vector extraction side 
of PlebML described above.  
Each module has to implement a series of components to be functional and should satisfy a set of best 
practice guidelines not enforced within the source code.  
In the next sections we describe what each core module has to contain. Figure 8 shows what sort of 
dependencies between core modules are intended within PlebML’s architecture. 
 

 
Figure 8 - Core Module Dependencies 

 

As shown in Figure 8, each and every core module makes extensive use of the core library as it has to 

implement many interfaces and abstract classes.  

Core modules might deal with similar problems but with very different data structures, in such cases it might 

make sense to share utility functions. This however should not be done without deliberation as it strongly 

links those two core modules together. Copying or re implementing the utility functions might sometimes be 

a safer way, even though it would result in a DRY violation. 

Another feasible case is that a core module is implemented on a very general level, such as our text 

classification module. If the problem that is to be solved is a text classification but a very specific kind, parts 

of the core module can be extended. This would particularly concern the model object class and the 

preprocessor components.  
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2.2.2.1 Model 
The model represents the output of the preprocessor as well as what the feature implementations get passed. 
As features might be written by many different people, clean structure, simplicity and efficiency should be 
emphasized when designing a model. If for instance the raw data type would be an HTML-String one 
possibility would be to construct a DOM-Tree from it.  
Also classes that contain metadata written by preprocessor components should implement the 
IPreprocessorDataReciever interface to allow interaction on an abstract level. 
Designing the model and deciding on how to represent the data to the features is the first step of designing 
a core module. 
 

2.2.2.2 Preprocessor Implementation 
The layer of interfaces and abstract classes of the preprocessor already implicitly proposes a structure like 
shown in Figure 9: 
 

 

Figure 9 - Preprocessor structuring 

Structuring the preprocessor into several stages or groups of components often makes sense. In many cases 

the raw input passed by an importer needs to be structured, sanitized and enriched with additional meta-

data. Of course depending on the input these categories are not applicable, or many more might be of 

importance. However the preprocessor should specify what kind of components there are and in which 

chronological order they are executed. 

Since one category can have many components, it is important to think about how they influence each other 

and whether the order in which they are added to the preprocessor makes any difference.  

The preprocess method on the preprocessor main class is responsible for invoking all components in the 

correct order and returning a preprocessed model object at the end.  

When designing the preprocessor in conjunction with the model object there are some important 

considerations: 

- What additional data will the feature extraction need? 

- How are multiple components within the same group handled? 

- Do I retain the original raw input data on the model object? 

- How is the preprocessor configured?  
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2.2.2.3 Feature Implementations 
The architecture of the Feature itself is trivial as it is only a simple Interface. To understand its interaction 
with the rest of PlebML refer to the chapter “Feature extractor”. In this section we describe the structure of a 
feature implementation and a few pointers on how to implement it. 
The first thing that should be done when starting the feature implementation in a core module is to extend 
the IFeature interface to put the required model object generic in place. All feature implementations in the 
core module must then implement this new interface. 
 
public void extract( 

ModelObjectType modelObj,  

FeatureVector<ModelObjectType> vectorToWriteTo, 

List<ConfigType> configs 

); 

 

This is the main method of concern within each feature implementation class. The passed ModelObject is 
generated by the preprocessor of the same core module and should contain all pertinent information for this 
feature.  
The best practice to ensure all related preprocessor components were invoked is to use the 
@RequiresComponentClass annotation. This annotation allows to model dependencies between features 
and the preprocessing stage. 
 
@RequiresComponentClass(componentClass = TweetNLPPOSTagger.class) 

public class NumberOfPOSTags implements ISentimentAnalysisDefaultVectorFormat<Void> {} 

 
This is an example from our text classification Core module showing the class header of a feature 
implementation. As mentioned before the IFeature interface was extended, now only requiring the class 
generic for the passed configuration objects. Also the usage of the @RequiresComponentClass annotation 
is shown. The componentClass parameter in this annotation has to be a class that implements the 
IPreprocessorComponent interface. 
 
In the extraction method, the second parameter is where all the feature vector entries this class calculates 
are to be put. The FeatureVector class behaves very much like any map in Java. This is why collisions 
between keys should be avoided within one feature class.  
 
The configuration list is initially given to the builder when adding this feature. It is then received by the feature 
when its extract method is executed. Best practice is to create a separate method that extracts the feature 
values based on one configuration instance and then loop through the whole list and call this method for 
each configuration instance. 
 
In general developers are encourage to write thread save extract methods when they implement new features 
to allow concurrent execution. Features whose extract method is thread safe should implement one of the 
concurrent marker interfaces ConcurrentMidLoadFeature and ConcurrentHeavyLoadFeature. Best practice 
is to implement ConcurrentMidLoadFeature only for features who need far less processing time than 
ConcurrentHeavyLoadFeature as a wrong placed ConcurrentMidLoadFeature can lead to performance 
impacts. 
 
Features should be as independent as possible allowing many software engineers to contribute their own 
features to the core module. This is also why the interface is rather lightweight. To find out which 
constellations of features proof especially effective for which sort of tasks, extensive experimentation has to 
be done. At the moment PlebML does not offer automatic mechanisms for such experiments, however they 
can be implemented on a Pipeline by the core module developers themselves. 
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2.2.2.4 PostProcessor Implementation 
The implementation of the postprocessor is responsible to delegate method calls to all its functions. Therefore 
its structure is quite simple. 
 

2.2.2.5 PostProcessorFunction Implementation 
A postprocessing function implements the PostProcessingFunction which has the following methods: 
 
void initialize(Iterable<SparseVector> vectors, Set<Integer> bagOfIndices) 
This method gets called once for each postprocessing function when all feature vectors for training are 
extracted. Its purpose is to allow functions to gather information about the data, for example the minimum 
and maximum value of a feature. The first parameter contains an Iterable over all feature vectors. A function 
is responsible for all features with an index contained in the second parameter. The bag of indices has to be 
persisted by the function. After a call to this method the function has to be capable of processing feature 
vectors independently. 
 
void process(SparseVector vector) 
After the function has been initialized with a call to initialize(...) or load(...) it has to be capable of handling 
calls to process. Within this method it has to apply the transformations on the vector in place. It is important 
that the method only reads and writes values with the indices it is responsible for. 
 
void save(String workingDir) 
With a call to this method all values needed to process feature vectors have to be persisted. The function is 
responsible to create a directory named with the full class name of the function within the directory referenced 
by workingDir and to persist all data needed within this directory. 
 
void load(String workingDir) 
With a call to this method all values needed to process feature vectors have to be loaded from the directory 
referenced by workingDir. 
 
 

  



Source Code Modularization  Software Architecture 

Arnold Marek & Egger Dominic  PlebML P a g e  29 | 68 

2.2.2.6 Builder Implementation 
This is what the usage of a fully implemented Builder looks like. Note the usage of option chaining mentioned 
earlier in this work. It resembles a folder structure the indentation indicating the navigation. 
 
TextClassificationBuilder builder = new TextClassificationBuilder(); 

builder 

    .advancedOptions() 

        .preprocessor() 

            .addTokenizer(new SuperSimpleTokenizer()) 

            .addMutation(new SimpleUserNameNormalizer()) 

            .addMutation(new SimpleURLNormalizer()) 

            .constructPreProcessorFromFeatureRequirements() 

    .advancedOptions() 

        .featureExtraction() 

            .addFeature( 

                        new NGramFeature(), 

                        new NGramConfigWrapper(1, Sets.newHashSet()), 

                        new NGramConfigWrapper(2, Sets.newHashSet()), 

                        new NGramConfigWrapper(3, Sets.newHashSet()), 

                        new NGramConfigWrapper(4, Sets.newHashSet()), 

                        new NGramConfigWrapper(1, Sets.newHashSet(), ExtractorModes.LEMMA), 

                        new NGramConfigWrapper(2, Sets.newHashSet(), ExtractorModes.LEMMA), 

                        new NGramConfigWrapper(3, Sets.newHashSet(), ExtractorModes.LEMMA), 

                        new NGramConfigWrapper(4, Sets.newHashSet(), ExtractorModes.LEMMA) 

                    ) 

            .addFeatureWithRecommendedConfigs(new NonContiguousNGram()) 

            .addFeatureWithRecommendedConfigs(new NonContiguousNGramWithPOSTagAsWildcard()) 

            .addFeature(new NrOfHashtags()) 

            .addFeature(new NrOfAllCapsToken()) 

            .addFeature(new NumberOfPOSTags()) 

            .addFeature(new GloveFeatures()) 

            .addFeature(new NrOfNegatedContexts()) 

            .addFeature(new NrOfElongatedWords()) 

            .addFeatureWithRecommendedConfigs(new LastTokenContainsPunctuation()) 

            .addFeatureWithRecommendedConfigs(new ContinuousPunctuation()) 

            .addFeature(new CMUTweetClusterFeature()) 

            .addFeature(new ScoreTotal()) 

            .addFeature(new ScorePos()) 

            .addFeature(new ScoreNeg()) 

            .addFeature(new LastTokenScore()) 

            .addFeature(new LastTokenNegScore()) 

            .addFeature(new LastTokenPosScore()) 

            .useMemoryStrategy(MemoryStrategy.HEAP) 

    .advancedOptions() 

        .parallelisation() 

            .useParallelisationStrategy(ParallelisationStrategy.SERIAL_DATA_SERIAL_FEATURE) 

    .advancedOptions() 

        .postProcessor() 

            .putPostProcessingStepForClass(ScoreTotal.class, new Sigmoid()) 

            .putPostProcessingStepForClass(ScorePos.class, new Sigmoid()) 

            .putPostProcessingStepForClass(ScoreNeg.class, new Sigmoid()) 

            .putPostProcessingStepForClass(LastTokenScore.class, new Sigmoid()) 

            .putPostProcessingStepForClass(LastTokenNegScore.class, new Sigmoid()) 

            .putPostProcessingStepForClass(LastTokenPosScore.class, new Sigmoid()) 

    .advancedOptions() 

        .outputSystemOptions() 

            .addSysOutEventListeners() 

 

 

When implementing a new builder for a core module the AbstractBuilder class has to be extended. This will 

require various generics to be specified and the explanation will be with our text classification example. 

Besides extending the AbstractBuilder there have to be two other classes. One extending the 

AdvancedOptions class and one extending the PreProcessorAdvancedSubOptions class. Often the class 

extending the AdvancedOptions will not contain much actual implementation but only serves to specify the 

needed generics. The preprocessor options however have to be completely implemented according to the 

specifications of the preprocessor in this core module. 
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These are the three class headers of the classes that need to be created: 

public class TextClassificationBuilder extends AbstractBuilder <TextWrapper, Document, 

Integer, TextClassificationBuilder, TextClassificationAdvancedOptions> 

 

public class TextClassificationAdvancedOptions extends AdvancedOptions <Document, 

TextClassificationBuilder, TextClassificationAdvancedOptions, PreprocessorOptions> 

 

public class PreprocessorOptions extends PreProcessorAdvancedSubOptions 

<TextClassificationPreProcessor, TextClassificationAdvancedOptions, 

PreprocessorOptions> 

 

The generics have to be specified as follows: 
 
For the Builder Class: 

- TextWrapper is in this case the RawData type that is provided by the Importers. 
- Document is the model object class generated by the preprocessor. 
- Integer is the result provided by the machine learning prediction. 
- TextClassificationBuilder must be the class of the builder itself so that the return values of chaining 

functions do not have to be casted. 
- TextClassificationAdvancedOptions is the class that extends AdvancedOptions. 

 
For the AdvancedOptions Class: 

- Document is again the model object class generated by the preprocessor. 
- TextClassificationBuilder is the type of Builder that this AdvancedOptions implementation belongs 

to. It is returned by the builder() method for chaining purposes. 
- TextClassificationAdvancedOptions is the class of the AdvancedOptions itself. Again this is needed 

for chaining. 
- PreprocessorOptions is the class specifying the options for the Preprocessor of this Core module. 

 
For the PreProcessorAdvancedSubOptions Class: 

- TextClassificationPreProcessor is the class that implements the IPreprocessor interface. This will be 
returned by this class’ make method.  

- TextClassificationAdvancedOptions this is the class of AdvancedOption this belongs to. It well be 
returned by the advancedOptions method of this class for chaining purposes. 

- PreprocessorOptions is again the class itself needed for the option chaining. 
 
There are some patterns that need to be followed when implementing a builder. One is the constructor of the 
advanced options. It should look like this: 
 
private TextClassificationAdvancedOptions(TextClassificationBuilder _self) { 

    super(_self); 

} 
 
When the advanced options are instantiated they will be passed the instance of the builder. This again needs 
to be passed along to the super constructor, so that the navigation with the builder, respectively 
advancedOptions methods works. 
 
The next pattern is when overwriting the PreProcessorAdvancedSubOptions or adding/overwriting any other 
AdvancedSubOption Class. 
 
private PreprocessorOptions(TextClassificationAdvancedOptions _selfP) { 

    super(_selfP); 

    super.instance = new TextClassificationPreProcessor(); 

} 
 
Each AdvancedSubOption class contains an attribute called instance. This is what is returned by the make 
method unless that method is specifically overwritten. This instance should be made available to be 
configured in the constructor of the class. The reason for this will be explained when the next and final pattern 
is shown. 
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This pattern shows how to implement a new options method to an AdvancedSubOption class. 
 
public PreprocessorOptions addTokenizer(IDocumentTokenizer tokenizer) { 

    super.instance.getConfiguration().addTokenizer(tokenizer); 

    return this; 

} 
 
As shown option methods should mostly be delegates to the instance attribute of this AdvancedSubOption 
class. This is why it is important to have instantiated the instance object in the constructor.  
There are other ways to handle this, such as the usage of a properties or configuration object and then 
constructing the instance object directly in an overwritten make method. However this is discouraged as the 
builder should have as little factory logic as possible to ensure possible usage of the built instances outside 
of the builder environment.  
 
The other important point here is that every options method has to return the this variable. This is absolutely 
needed to make chaining possible. Also note the return type of the method being the AdvancedSubOption 
class in question itself. 
 
Besides these patterns there is another important point to consider when implementing builders. A builder 
should offer various static factory methods returning a preconfigured builder. These default configuration can 
then be used by a less versed user or in a pipeline. 
 

2.2.2.7 Pipelines 
Pipelines on a core module can be very specific, making use of a particular builder and machine learning 
component. They can be hierarchically orders so that first an advanced pipeline is made with very intricate 
and highly detailed workflows and then a basic pipeline that extends the advanced one and offers much more 
easy to use, already parameterized calls to the advanced pipeline. 
 
When designing a Pipeline particular attention should be paid to the Javadoc. Since the methods on a 
pipeline class build consecutive steps of a workflow it should be documented which method build one 
workflow, which method can be substituted by another and which calls are optional.  
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2.2.3 Tasks 
Tasks are packages that use a core module in its as-is state with a particular dataset and use case in mind. 
To this end the following has to be done: 
 

2.2.3.1 Importer 
PlebML’s interface to physical storage is done by importers. These need to handle the file reading to supply 
the preprocessor with the needed raw data. Since the format of a file or storage location can vary strongly 
with each usage of a core module these importers are provided by the task package. 
 

2.2.3.2 System Integration 
The Task level implementation is also responsible to interact with the surroundings of PlebML. Whether this 
is a simple main class or an integration into an existing software project is decided here. Interaction with the 
core module should if possible be via pipeline-classes.  
 
However depending on the circumstances the system integration can also use other layers of PlebML 
directly. There are three usage concepts for PlebML according to its software structure. 
 

Usage Concept of PlebML 
PlebML offers conceptually three layers for system integration depending on which part of PlebML are to be 
used.   
 
Task-Level Integration 
As described above, task-level integration is the most desirable as the only thing to be done is providing the 
necessary Importers and interaction with the provided pipelines. At most an own pipeline has to be written if 
those in the core module do not offer the desired functionality. This level of integration uses PlebML as a 
whole. 
 
Module-Level Integration 

Module-level integration is most likely used when only the feature vector generation part is of interest. This 
could be when the system around PlebML already has its own machine learning engine. In this case 
interaction will mainly be with the builder and the resulting feature vector generators. This is because the 
feature implementations are actually part of a Core Module, not the Core Library. It is possible that some 
conversion has to be done so that the results of the feature vector conform to the needed format. 
 
Core-Level Integration 
The primary use-case of pure core-level integration is usage of PlebML’s machine learning components with 
already generated feature vectors. For this to happen the given vectors have to be converted into the PlebML 
format and integration of the provided machine learning component has to be done manually. As for the 
abstraction layer for the machine learning part see the chapters “Machine Learning Component” and 
“Machine Learning” 
 

2.2.4 Design Concerns 
Due to the chosen architecture it is hard to share utility functionality (such as mathematical formulas, string 
utils and such) between core modules. Either the core modules are made dependent from one another, which 
can lead to problems when distributing PlebML with a selection of Core modules, or the necessary code is 
in each core module packaged redundantly which constitutes a DRY violation. 
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3 Text classification with PlebML 
In this chapter we describe a specific implementation of a core module that is part of our current PlebML 

code. It will mainly focus on changes in comparison to our codebase. 

3.1 Model Object Class 
The model object class of the text classification core module is split into a hierarchical structure of 
Documents, Paragraphs, Sentences and Tokens. The basic structure is still the same as it was in our code 
base. However it has been refactored to conform to our new structural requirements and to be easier to use. 
Figure 10 is not an exhaustive class diagram but shows the most important methods and attributes. As 
mentioned before the Token class now implements the IPreprocessorDataReciever interface allowing 
abstract storage of metadata on the model. With this refactoring, usage of metadata on Feature 
implementations is very streamlined and intuitive. 

 
@RequiresComponentClass(componentClass = TweetNLPPOSTagger.class) 

public class NumberOfPOSTags implements ISentimentAnalysisDefaultVectorFormat<Void>  

 
This class has the RequiresComponentClass annotation prompting the builder to load the 
TweetNLPOSTagger preprocessor component when constructing the preprocessor. When this features 
extract method is called the meta data can easily be retrieved with this code: 
 
t.getDataFromGlobalComponent(TweetNLPPOSTagger.class) //t is a token 

 

A feature should always assume that the correct preprocessor settings were run. It could happen that the 
dependency crawling for the preprocessor was not executed and the user did not add the 
TweetNLPPOSTagger component. In this case the method would return null. It is the features job to handles 
such a case as it is impossible for the Token (which holds the relevant data) to know sensible default values 
for each component. If this is a problem the Token offers orDefault() variations of the data retrieval methods, 
very similar to those of the java maps. They accept a second parameter which represents a default value to 
be returned if the original result would have been null. 
  

Figure 10 - Changes to Model Class 
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3.2 Preprocessor 
The preprocessor has not been structurally changed but some components have been added. 
 

3.2.1 GeneralTokenizer 
The GeneralTokenizer is a tokenizer designed for text written in the Roman alphabet. It splits the text in 
paragraphs sentences and words and additionally analyses the document for an xml tree like structure. 
 
When tokenizing the GeneralTokenizer first sanitizes the document to remove line separators and other 
attributes that would obfuscate xml like tokens and then splits it in tokens line by line. There are two kinds of 
tokens, normal tokens are considered to be words and are therefore simply delimited by spaces, tokens that 
start with a ‘<’ and for which a corresponding closing ‘>’ character is found on the same line are considered 
to be xml tokens and everything between the opening and closing character is treated as a single token, in 
the further processing all attributes of these tokens are removed from the text of the token and instead kept 
as metadata on the token. 
 
Within a xml tree like structure all tokens are kept in a single paragraph, sentences are almost formed the 
same way as for normal text, with the only addition that each xml token ends the previous sentence and is 
placed as single token in a new sentence. An xml tree like structure begins with an opening xml token that 
has the form “<...>” and ends either in a correct way where all opening tokens are closed by a closing token 
“</…>” or in an erroneous way, where a closing token appears for which no opening token exists. 
 
Outside of xml tree like structures paragraphs are separated by two or more consecutive new lines and 
sentences are ended by either punctuation or new lines. 
 

3.2.2 SimplestTokenizer 
This tokenizer is, as its name implies, the most basic implementation of a tokenizer. It splits up the whole 
document by spaces. The generated words are organized in sentences by simple punctuation and all 
sentences are kept in a single paragraph. 
 

3.2.3 SimpleEMailNormalizer 
To normalize email addresses within documents this mutation was implemented. It replaces all email 
addresses with a regex expression by a default term. This is important to avoid fitting for example a spam 
filter to certain addresses instead of the general structure of spam. 
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3.3 Included Features  
The included features have stayed largely the same and can be found in the appendix. There are a few 
utilities that are noteworthy as they might be used very often when adding new features for text classification. 

3.3.1 N-Gram Utility Class 
The NGram class is instantiated with a size and a delimiter parameter as shown here: 
public NGram(int size, String delimiter) 

 
The size is the length of the n-gram measured in number of tokens. The next important method is: 
public void addNext(String s, Consumer<String> callOnceFull) 
 
This method accepts a String and adds it to the current n-gam. Once the n-gram reached a number of 
elements equal to the size parameter it will join the elements together delimited by the constructor’s delimiter 
parameter and pass it to the callOnceFull consumer. The passed string is meant to be used as local key in 
any n-gram feature. 
 
There is also an option to create n-grams with wildcards meaning that between index 0 and index n all 
elements and element combination will be substituted for every possible wildcard permutation. Consider the 
n-gram It_is_a_nice_day. It would be passed to the callOnceFull consumer in the following permutations: 
 
It_*_a_nice_day. 
It_is_*_nice_day. 
It_is_a_*_day. 
It_*_*_nice_day. 
It_is_*_*_day. 
It_*_*_*_day. 
 
The * can be any wildcard passed be that a static string or dynamic data like a POS tag. The method to work 
with wildcards only differs slightly. 
 

public void addNextWildCarding(String s, String possibleWildCard, Consumer<String> 

callOnceFull) 

 

It is strongly recommended to only work with one of the two methods (adding with wildcards or without) per 
n-gram instance. 
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3.3.2 Dictionary System 
The system for dictionaries has been completely reworked to be more generalized and powerful. Dictionaries 
can now be transient, meaning that it is composed of several other dictionaries and lookups are distributed 
to each component dictionary and reduced by a given function to a single result. A transient dictionary can 
also be re-constructed so that it is not transient anymore but instead holds all reduced entries of the 
component dictionaries. Then it can be stored to a physical location. This is often recommended for speedups 
if the required dictionary is not conditionally constructed. 
This example code snippet shows how a Dictionary is constructed: 
 
Dictionary partialNeg = DictionaryRepo.loadFromRawDictionary( 

        NEG_DICT_NAME, 

        "bingLiuPartialNeg", 

        lineReaderFunction 

); 

 

Dictionary partialPos = DictionaryRepo.loadFromRawDictionary( 

        POS_DICT_NAME, 

        "bingLiuPartialPos", 

        lineReaderFunction 

); 

 

Dictionary partialCombined = DictionaryRepo.loadFromRawDictionary( 

        COMBINED_DICT_NAME, 

        "bingLiuPartialCombined", 

        lineReaderFunctionPartial 

); 

 

Function<List<Map.Entry<Dictionary, Integer>>, Integer> reducer =  (hits) -> { 

    return hits.stream().mapToInt((entry)->{return entry.getValue();}).sum(); 

}; 

 

 

Dictionary<Integer> dict = new Dictionary<Integer>(DICT_IDENTIFIER) 

        .addFromDictionary(partialNeg) 

        .addFromDictionary(partialPos) 

        .addFromDictionary(partialCombined) 

        .reduceMultipleHitsWith(reducer) 

        .constructFromTransientData() 

        .store(DICT_IDENTIFIER); 

 

return dict; 
 
The DictionaryRepo is a class with some static loader functions parameterized by the physical location of the 
dictionary file, the dictionary identifier and a line reader function. This example also shows how to construct 
a transient dictionary, then make it non-transient and finally store it so that on the next usage of this dictionary 
it can be directly loaded from physical storage.   
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3.4 Pipelines and Builder 
This chapter gives an overview over the existing pipelines and builders in the text classification core module. 

3.4.1 TextClassificationBuilder 
The structure and usage of the builder has already been discussed as part of the previous chapter “Builder 
Implementation”. This section will shortly summarize the existing default configurations. 
 
public static TextClassificationBuilder getDefaultEnglishLanguageBuilder() 

 
This default configuration will return a suitable feature vector generator for English language text 
classification tasks. The configuration is: 
 

- Preprocessing 
o Simple Tokenizer  

Delimits by whitespaces in text. 
o Username Normalizer 

Substitutes all string starting with @ with a generic token. 
o URL Normalizer 

Substitutes all URLs with a generic token. 
o Dependency crawling is enabled 

- Feature Extraction 
o N-Grams 
o Lemma N-Gram  
o Wild card N-Grams 
o Number of all caps tokens 
o Number of POS Tags 
o Number of negated contexts 
o Number of elongated words 
o Whether the last token contains punctuation 
o Occurrence of continuous punctuation 

 
Memory usage strategy and parallelization strategy can be changed. They are on their respective default 
values of heap-use and serial.  
 
The other default configuration is  
public static TextClassificationBuilder getDefaultRomanAlphabetLanguageBuilder() 

In comparison to the configuration above it removes all POS and negation features as they are dependent 
on the fact that the texts language is English. 
 
In both cases it is recommended to add and/or replace the simple tokenizer with more specific ones.  
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3.4.2 AdvancedTextClassificationPipeline 
This pipeline offers granular parameterization over the most common optimization workflows. Its important 
methods are: 
 
public AdvancedTextClassificationPipeline 

(FeatureVectorGenerator featureVectorGenerator) 

Use this constructor if you plan to use one of the c-parameter optimization methods. This constructor will 
instantiate a dummy placeholder for the ML-component, intended to be later replaced by an optimizer call. 
 
public AdvancedTextClassificationPipeline 

(FeatureVectorGenerator featureVectorGenerator, String ident) 

This constructor loads a saved ML-component with the ident parameter. This is used if the component in 
question is already trained and the pipeline is to be used for evaluation and prediction. 
 
public void optimizeMLComponentCParameter 

        (OptimizationGoal goal,  

         LiblinearClassifierSolverType solver,  

         double eps,  

         double minLogC,  

         double maxLogC,  

         double cStepSize,  

         int nrOfFolds,   

         Importer importer ,  

         String... files) 
This is the c-parameter optimization method. It will search for the c-parameter resulting in the best score 
according to its optimization goal. It will replace the existing ML-component for this pipeline. 
 
public EvaluationResult evaluate(Importer importer, String... files) 
This Method will run a text classification specific kind of evaluation on the given data. The data has to be 
training data and the ML-component has to be trained already. The read data will then be predicted and the 
result will be compared to the entries in the training file. The evaluation result offers various statistical 
measures for the performance of the Pipeline such as precision, recall and F1-score. 
 

3.4.3 BasicTextClassificationPipeline 
The basic pipeline extends the advanced one and offers already parameterized calls for the optimization 
methods. The parameters are empirically chosen to result in decent scores while retaining an acceptable 
runtime. 
 
Example usage of the basic pipeline: 
1) Instantiation, training and storing. 
BasicTextClassificationPipeline pipeline = 

BasicTextClassificationPipeline.defaultPipeline("./" + ident); 

pipeline.findGoodClassifier(  

        new TweetImporter(),  

        "/Datasets/semevalsentiment/fromnrc/task-B-train.tsv",  

        "/Datasets/semevalsentiment/fromnrc/task-B-dev.tsv"); 

pipeline.storeMachineLearningComponent("sentiment15RC"); 

 

2) Instantiating, loading and evaluating. 
BasicTextClassificationPipeline pipeline = 

BasicTextClassificationPipeline.loadTrainedDefaultPipeline("./" + ident, ident); 

EvaluationResult result = pipeline.evaluate 

(new TweetImporter(),  

 "/Datasets/semevalsentiment/task-B-test2013-twitter.tsv"); 

 

It is important to note that the settings for the feature vector generation have to be constant between training 
and evaluation/prediction. Otherwise there will be non-existent indices and a resulting score loss.  
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4 Best Practices for Core Module Design 
When designing a core module, several things should be done that are considered best practice for PlebML. 
 
1) The model class should implement the IPreProcessorDataReciever interface. 
 
2) The preprocessor should consists of a main class and components implementing the 
IPreprocessorComponent interface. Also it should support the methods necessary for dependency crawling. 
 
3) The feature package should contain an interface extending the IFeature interface and it should define the 
model object class generic. All features should then implement this new interface. 
 
4) The feature implementations should make use of the dependency crawling annotations. 
 
5) The core module should have a builder extending the abstract builder according to specifications in the 
“Builder Implementation” chapter. 
 
6) This builder should offer static factory methods for itself with sensible default configurations. 
 
7) The core module should offer one or more pipelines. Often it will make sense to start with a highly granular 
and advanced pipeline and then generalize it by extension as done in the text classification module. Keep in 
mind that having basic pipelines makes the usage of the core module much easier to people not versed in 
machine learning. 
 
8) Include one or more sample tasks showing the usage and specialties of the core module.  
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5 Measurements and Results 
5.1 Machines 
For all measurements the machines described in Table 5 and Table 6 were used: 
 
Machine A  
Processor Intel Xeon 8x 2.53GHz 
Main memory 16GB 
Disk Virtual disk 40GB 
Java version Java(TM) SE Runtime Environment (build 1.8.0_25-b18) 
JVM version Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode) 
OS Windows 7 Enterprise sp1 

Table 5 - Machine A description 

Machine B  
Processor Intel Core i7-3520M 4x ~3.39GHz 
Main memory 8GB 
Disk Samsung SSD 840 PRO Series ~100kIOPS 256GB 
Java version Java(TM) SE Runtime Environment (build 1.8.0_20-b26) 
JVM version Java HotSpot(TM) 64-Bit Server VM (build 25.20-b23, mixed mode) 
OS Windows 7 Professional sp1 

Table 6 - Machine B description 
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5.2 Performance Enhancement Evaluation 
In this chapter the performance enhancements are evaluated based on the performance of the original 
framework [1].  
 
To measure the performance enhancements of the new framework, its performance is compared to the 
original framework based on the tweet sentiment task. The direct comparison could only be performed on 
Machine A due to the massive memory consumption of the original framework that leads to 
OutOfMemoryErrors (OOME) on Machine B. 

5.2.1 Feature Extraction 
To compare the performance in the feature extraction stage, the set of features used in the original framework 
was applied on 9912 tweets out of the tweet sentiment dataset. In Table 7 the times used to extract the 
denoted set of features are shown, in the column Original the time of the original framework on Machine A is 
noted and in the other two columns the times of PlebML on Machine A and B. 
 
Test Original on 

Machine A 
Original on 
Machine B 

PlebML on Machine 
A 

PlebML on Machine 
B 

Time 5:42 OOME 2:17 2:14 
Table 7 - Performance comparison of the feature extraction 

As shown in Table 7 the time needed to extract the features with PlebML is less than half the time needed 
with the original framework and additionally it’s possible to extract the features with far less memory and 
therefore smaller machines can be used. 

5.2.2 Machine Learning 
In this section the performance of the original frameworks wrapper for Liblinear is compared to the improved 
version of Liblinear in PlebML concerning memory consumption and elapsed time. For this purpose the best 

c parameter is searched within [2−8, 2−7, … , 2−1] using the solver L1R_L2LOSS_SVC with 10 fold cross 
validation for the tweet sentiment problem. The results are shown in Table 8. 
 
Framework 
Machine 

Original 
A 

Original 
B 

PlebML 
A 

PlebML 
B 

Used time 88:34 OOME 24:31 29:42 
Used heap 8.5GB OOME 6GB 3.2GB 

Table 8 - Performance comparison of the machine learning 

The improved version of Liblinear is more than three times as fast as the original library and additionally 
solves the same problem with less than half the memory. 

5.2.3 Conclusions 
With a total time to extract features and to find a classifier of approximately 27 minutes PlebML is 
considerably faster than the original framework which needs more than 94 minutes for the same task. 
Additionally with PlebML it is possible to solve this task with less than half the memory and therefor smaller 
machines like Machine B can be used to solve the same problem. 
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5.3 Tested Datasets 
In this chapter the various datasets used to test the framework and the results achieved with these datasets 
are presented. 

5.3.1 Semeval 
This dataset originates from the Semeval competition 2014, the original framework was written for this 
dataset. It consists of more than 11’000 tweets labelled with their sentiment, from which 1853 are reserved 
for the test set. 

5.3.1.1 Results 
For this dataset the same selection of features was used as by the original framework. To find the best 
classifier for this data set, the optimizeMLComponent method of the advanced pipeline was used. The 
detailed results of the cross validation done for this search are presented in Figure 11. In this figure the y-
axis measures the average F1 score achieved with the solver type and log c value that are stated below the 
x-axis.  
 

 
Figure 11 - Semeval scores of optimizeMLComponent for different solvers and log c. 

The best value (0.669) was achieved with the solver type L1R_L2LOSS_SVC and a log c parameter of -4, 
the evaluation with the test set yields an F1 score of 0.682. 
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5.3.2 Spam 
This dataset is composed of several publicly available labelled spam and non-spam email datasets, which 
were cleaned from viruses. The datasets used are: spamassasin, lingspam and enronspam as found on 
csmining [20]. 
The dataset consisting of about 62’000 labelled emails was split in half by random choice to get a train and 
a test set. 

5.3.2.1 Results 
For this dataset in addition to the default features for English language of PlebML the GeneralTokenizer and 
the corresponding features were used to benefit from the XML structure in some emails. Further all email 
addresses and URLs have been normalized to avoid over fitting. Due to the size of the problem it was not 
feasible to simply optimize over all solver types. Therefore only for one solver type the optimal classifier has 
been searched, the results of the cross validation are shown in Figure 12. In this figure the values are the 
averaged F1-score and on the x-axis the solver type and the corresponding log c value are noted. 
 

 
Figure 12 - Spam optimizeOverC MCSVM 

The evaluation of the best candidate found with cross validation resulted in a final score of:  
Ham precision: 0.996 and ham recall: 0.999 where ham stands for non-spam emails. 
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5.3.3 Movie Review Sentiment 
This data set is part of a Kaggle competition, they describe it as follows: 
“The Rotten Tomatoes movie review dataset is a corpus of movie reviews used for sentiment analysis, 
originally collected by Pang and Lee [21]. In their work on sentiment treebanks, Socher et al. [22] used 
Amazon's Mechanical Turk to create fine-grained labels for all parsed phrases in the corpus. This competition 
presents a chance to benchmark your sentiment-analysis ideas on the Rotten Tomatoes dataset. You are 
asked to label phrases on a scale of five values: negative, somewhat negative, neutral, somewhat positive, 
positive. Obstacles like sentence negation, sarcasm, terseness, language ambiguity, and many others make 
this task very challenging.” [23] 
 
The movie review dataset is used to test the PlebML with a huge load of test instances, as the dataset 
consists of more than 150’000 labelled phrases, and the feature extraction results in features in more than 
5’700’000 dimensions. 
 

5.3.3.1 Results 
For this dataset the same features as for the Semeval dataset were used. Due to the size of the problem it 
was not feasible to simply optimize over all solver types. Therefore only for one solver type the optimal 
classifier has been searched, the results of the cross validation are shown in Figure 13. In this figure the 
values are the averaged F1-score and on the x-axis the solver type and the corresponding log c value are 
noted. 
 

 
Figure 13 - Movie review sentiment optimizeOverC 

The best score reached with cross validation is 0.565 with a log c value of -6. A classifier trained with these 
settings was used for a submission on Kaggle and reached a final score of 0.633 and a theoretical position 
in the competition of 216 out of 862 participants. The winner of the competition achieved a score of 0.765. 
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5.3.4 Black Box Features 
This dataset originated in a Kaggle [24] competition where the participants had to classify a set of features 
without knowing where this features originated from, additionally to a small set of labelled feature vectors a 
huge set of unlabelled vectors was provided. This dataset was used to test how easy the framework can be 
adapted to different problems. 
 

5.3.4.1 Adaptions 
For this problem a new core module had to be implemented consisting of a new document model and a 
feature to handle the new model. As the data to classify already only consists of features, the feature 
extraction is trivial. Additionally to the new core module an importer had to be written for this dataset. Further 
adaptions like features that would use the unlabelled vectors for clustering are not implemented yet. 
 

5.3.4.2 Results 
For this dataset all solver types that support multiclass problems provided by PlebML were tested with the 
recommended settings and for each solver type the best classifier was used for a submission on Kaggle, the 
results are shown in Figure 14 and Figure 15, in the first figure the cross validation results are shown and in 
the second the scores reached in the Kaggle competition are presented.  
 

 
Figure 14 - Black box cross validation results 

 
Figure 15 - Black box Kaggle submission results 

The best submission on Kaggle with a score of 0.196 was achieved with a classifier trained with the solver 
type MCSVM_CS and a log c parameter of -4, this score is above the average of all participants of the 
competition who did not use the unlabelled feature vectors. 
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5.4 Feature Extraction Performance Measurements  
In this section a selection of performance measurements during the feature extraction is presented for 
different setups and datasets, the complete collection of all measurements made is in the Appendix. In all 
figures in this chapter the left y-axis means features per second, the right y-axis means feature vectors per 
second and in the x-axis is the number of processed documents. 

5.4.1 Spam 
In this setup features for our spam data set are extracted. This dataset is well suited for a high load test as 
each email may consist of hundreds of lines. On Machine A only the heap memory strategy is tested, as it 
has only a small network disk with very high access times, on Machine B the MEMORY_MAPPED_HASH 
and the HEAP strategy are tested. The CACHED and CACHED_HASH strategy were not tested for this 
dataset, as they are designed for smaller loads. 

5.4.1.1 Fastest Feature Extraction 
The fastest feature extraction was achieved on both machines using the parallelisation strategy 
SER_DATA_PAR_FET, but due to the memory channel as main bottleneck, the speedup compared to 
SER_DATA_SER_FET is minor. On Machine B in combination with the MEMORY_MAPPED_HASH strategy 
more than 250’000 features were generated and about 115 email were processed per second as shown in 
Figure 16. 
 

 
Figure 16 - Spam feature extraction on Machine B, SER_DATA_PAR_FET and MEMORY_MAPPED_HASH 

5.4.1.2 PAR_DATA_PAR_FET Performance Issues 
With the parallelisation strategy PAR_DATA_PAR_FET the system requires not only more memory, what 
lead to the OOME on Machine B, but also more memory bandwidth, as multiple emails are processed at 
once and therefore cache misses significantly increase. This leads to the poor performance of the strategy 
PAR_DATA_PAR_FET in this setup. 
 

 
Figure 17 - Spam feature extraction on Machine B, PAR_DATA_PAR_FET and MEMORY_MAPPED_HASH 
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5.4.1.3 Performance Drop on Heap, Machine B 
The performance drop in the two experiments with the memory strategy HEAP on Machine B which 
completed successfully is caused by massive paging as Machine B barely had enough memory to extract 
the features on heap. One can see the performance drop in Figure 18 at about 27’000 processed emails. 
 

 
Figure 18 - Spam feature extraction on Machine B, SER_DATA_SER_FET and HEAP 

 

5.4.2 Semeval 
In this setup features for the tweet sentiment data set are extracted. This dataset is well suited to test a low 
load per document, as each tweet only consist of a single line of text. On Machine A only the heap memory 
strategy is tested, as it has only a small network disk with very high access times, on Machine B all strategies 
are tested. 

5.4.2.1 Cached 
The experiments with the cached memory strategies have shown that they are slower than the other 
strategies, but they provide the significant advantage of the smaller amount of required resources in terms 
of main memory and disk space. The results are shown in Figure 19. 
 

 
Figure 19 - Semeval feature extraction on Machine B CACHED, CACHED_HASH and SER_DATA_PAR_FET 
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5.4.2.2 PAR_DATA_PAR_FET on Machine B 
On Machine B the increased memory usage of the strategy PAR_DATA_PAR_FET lead to a minor 
performance drop compared to the other strategies. One possible reason for the reduced performance of 
this strategy on Machine B is the hardware architecture, as its processor only has two physical cores and the 
main memory is shared with other hardware. Therefore only a small theoretical speedup could be gained 
compared to SER_DATA_PAR_FET, but due to the increased need of synchronization the performance was 
worse. In Figure 20 the performance of the parallelisation strategies is presented. 
 

 
Figure 20 - Semeval feature extraction on Machine B, HEAP 

5.4.2.3 Fastest Feature Extraction 
The fastest feature extraction was achieved with the combination of the strategies PAR_DATA_PAR_FET 
and HEAP on Machine A as shown in Figure 21. In this setup more than 160’000 features and about 150 
feature vectors were generated per second. 
 

 
Figure 21 - Semeval feature extraction on Machine A, PAR_DATA_PAR_FET and HEAP 
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6 Review of Results and Implications for Further Work 
In this chapter the goals initially stated in this work are revisited and we check whether we achieved them or 
not. Also we will discuss some open points that could be pertinent for further work. 
 

6.1 Goal Review 
1. There should be default configurations and default workflows such that the framework can be used 

by someone with very little or no expertise in machine learning. The usage should consist of only 
very few lines of code. 

 
We have implemented default configurations on the builder in form of factory methods. These will provide 
preconfigured feature vector generators for a specific kind of machine learning task. We also proposed a 
best practice for developers that introduce new builders in core modules that encourages to provide such 
default configurations for each builder.  
With them being directly on the builder class in a Core Module they are easily accessible to a software 
developer using PlebML and can be found at the same place for every Core Module. 
 

2. In comparison to our codebase performance should be improved, both in term of RAM usage and 
elapsed runtime.  

 
We dedicated the chapter “Performance” to this goal and cite our conclusion here again: 
 
“With a total time to extract features and to find a classifier of approximately 27 minutes PlebML is 
considerably faster than the original framework which needs more than 94 minutes for the same task. 
Additionally with PlebML it is possible to solve this task with less than half the memory and therefor smaller 
machines like Machine B can be used to solve the same problem.” [25] 
 

3. The software architecture needs to be overhauled as the separation of concern is weak, the 
interfacing has issues, extending the framework is very cumbersome and implementing a wide 
variety of tasks is very hard. 

 
This was solved on one side by introducing the Core Library and Core Module architecture to ensure easy 
extensibility and separation into pipelines, feature vector generators and machine learning components on 
the other side for separation of concern. The new architecture allows partial integration of PlebML into other 
systems in case one of these 3 parts is already provided by the surrounding system.  
 

6.2 Open Points 
However there are some open points that would need to be addressed in further work: 

- External resources are not handled very well as PlebML in its current state requires a rigid directory 

order and does not allow this to be changed. One possibility to solve this is to use Streams instead 

of filenames or location strings. This would also make the Importer interface obsolete, removing 

some implementation overhead. 

- Currently PlebML has no unifying naming scheme. This should be refactored to conform to Java 

clean code.  

- By now only sparse vectors are extracted during the feature extraction, to eliminate the overhead of 

the sparse representation for dense vectors, as found for example in image classification, a dense 

vector implementation should be introduced. 

- The parallelisation during the feature extraction yields only a minor speedup, this has to be 

addressed in a later version of PlebML. 

- PlebML offer only a module for text classification, more modules for a larger variety of problem 

domains should be implemented. 

These are currently the five major open points in PlebML that should be addressed first.  
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10 Appendix 
10.1 Entry 1 – Used Features [1] 

This is an Excerpt from the work “Development of a framework for text classification and participation at 
SemEval.” Additional information can be found in the chapter “Used features” in the referenced work. 
 
 

Feature Implemented Reference 

Avg./Min./Max. values over all pre-trained GloVe vectors for all occurring words 
in a tweet  

 
Yes 

 

Contiguous and non-contiguous n-grams. 
POS tag substitution for non-contiguous n-grams instead of the generic 
wildcard. 

Yes  

Contiguous character n-grams 3 to 5 Yes  

Number of words that are all capital letters. Yes  

The number of occurrences of each part of speech tag Yes  

The number of hashtags Yes  

Lexicon feature: The total amount of tokens with an emotion 
greater than 0 

Yes  

Lexicon feature: total score of all tokens in a tweet Yes  

Lexicon feature: maximal score of a token in a tweet Yes  

Lexicon feature: the score of the last token in a tweet Yes  

The number of contiguous punctuation mark  
(exclamation or question marks) 

Yes  

Whether the last token contains an exclamation or a  
question mark 

Yes  

Presence or absence of positive/negative emoticons No  

Whether the last token (or word) is a positive/negative emoticon Yes  

The number of elongated words  
(a character repeated more than 2 times) 

Yes  

Presence or absence of tokens from Brown-Clusters generated 
by the CMU POS-Tagging tool 

Yes  

The number of negated contexts Yes  

The presence of URL or hashtag, one feature each No  

The presence of a question mark token in the tweet No  

Feature weighing: If the original token is all upper case, increase the weight of 
the feature 

No  

Feature weighing: If the original token has elongation, increase the weight of the 
feature 

No  

Feature weighing: the token is adjacent to an emoticon. 
Increase/decrease depends on emoticon 

No  

Feature weighing: the score of each token is divided in half 
if it is in question context 

No  

Weighing of a term by ∆BM25 heuristic 
(Paltoglou and Thelwall, 2010) 

No  

Concise Semantic Analysis (Li et al 2011) (Monroy et al 2013) No  
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Emoticons: Sum of all scores No  

total length of the tweet No  

average length per word No  

number of words No  

topic modelling (id of the corresponding topic, semantic similarity) No  

Most common punctuation No  

Last punctuation in tweet No  

number of words surrounded by dashes or asterisks No  

POS n-grams Yes  

Dependency parsing using StanfordNLP[12] Toolkit No  

Punctuation of the last token (whether the last token contains  
punctuation or not) 

No  

Ratio of tokens that were able to be matched to a Brown cluster. No  

Lemma n-gram / Lemma bag of words No  
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10.2 Entry 2 - Getting Started With PlebML 
This chapter is a standalone guide on how to get started with PlebML. It is intended for software devs without 
machine learning experience and machine learning experts alike. The sections are color-coded depending 
on the needed expertise.  
 
Green sections deal with general usage of PlebML 
Orange sections deal with usage and extension of PlebML requiring knowledge of machine learning. 

 

10.3 What Is PlebML 
PlebML is an easily extensible machine learning framework intended to give various levels of interaction 
needing different levels of machine learning expertise ranging from novice (should know what features are 
and what training and prediction is) to expert. PlebML is made up of three parts. The Core Library which 
contains the actual machine learning algorithms and wrapper to machine learning libraries, as well as  various 
utilities, interfaces and abstract classes needed by the second part.  
Core Modules provide modular functionality for a specific kind of machine learning tasks such as our stock 
module for text classification. A Core Module contains the class responsible for a sensible representation of 
the raw data within the system as well as the actual features and some other things which will be discussed 
below. Extending and creating these Core Modules is one of the main topics of this guide.  
The third and easiest part of PlebML are Tasks. Tasks consist of two parts. One is the handling and importing 
of the raw data until it can be handed to a Core Module. The second part is interaction with a Core Module’s 
Pipeline and Builders. It is also the topic of the BASIC level chapters in this guide 
 

10.3.1 [BASIC] The Structure of PlebML 
PlebML has three key parts: 
 

- Feature Vector Generator 
Feature vectors are what PlebML builds from the raw data string you pass into the text classification 
module. They are a bunch of measurements done on each string and are used by the machine 
learning part of the framework to do its required calculations. Such measurements could be the 
length of the string or the occurrence of a particular word when dealing with texts.   
These Feature Vector Generators need to be configured and instantiated. This is done by factories 
called Builders. These Builders should be part of the core module you’re using. In the case of the 
stock text classification module it’s called TextClassificationBuilder. 
Even though you can set every little possible thing on these builders often you might want to try one 
of the default configurations. They are offered as static methods on the builder class returning an 
instantiated ready to use builder. You can still modify configurations on the builder after retrieving it 
with a default configuration method. 
 

- Machine Learning Components 
These components are responsible for training, evaluating and prediction. Training needs to be done 
before the component can be used for prediction on an unknown data entry. Evaluation can be done 
to measure the performance of a machine learning component and must be done with unused 
training data for reliable results. For all these uses the machine learning component requires feature 
vectors. These can be either generated by the above described feature vector generator or can be 
loaded from an external source and then converted into the needed sparse vector format. 
 

- Pipelines 
These objects are the primary and easiest way to interact with PlebML. Every core module should 
have a basic pipeline that offers easy to use workflows for the entire machine learning process. 
The workflows on these classes will bridge the gap between the other two separate parts of PlebML. 
Especially if you don’t have much expertise in machine learning, using the basic pipelines should be 
the easiest way to work with PlebML. 
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10.3.2 [BASIC] Using the Basic Pipeline 
If the developer of the core module followed the best practice notes of PlebML, there should be one or several 
basic pipelines in each module. In the stock text classification module this is called the 
BasicTextClassificationPipeline and the following examples are explained with this pipeline. To use it you 
have to do the following things: 
 
1) Write an Importer: 
Core modules mostly don’t come with importers because they vary wildly between each application. 
Importers read the data that PlebML needs from physical storage and have to implement the Importer 
interface found in the ch.zhaw.init.plebml.coreLibrary.featureVectorGeneration.importer. There are two 
methods to be implemented, one to import TrainingData which consists of a raw data object (in the text 
classification case a String) and an expected prediction result (again, if you’re working with our stock module 
that would be Integer). We recommend an Enum to Integer mapping within your application so each class of 
text has its own enum label. All the example tasks of PlebML contain an importer package which contain 
implementations of said interface. 
 
2) Instantiate the Pipeline: 
Basic pipelines should have two ways to be instantiated. Either with a constructor which requires a Feature 
Vector Generator or with static method utilizing the default configurations of the Builder. In the text 
classification module the BasicTextClassificationPipeline offers both of these possibilities. 
 
Constructor: 
BasicTextClassificationPipeline(FeatureVectorGenerator featureVectorGenerator) 

 

Static factory Methods: 
defaultRomanAlphabetPipeline(String identifier) 

defaultEnglishLanguagePipeline(String identifier) 

 

The identifiers are very important. You have to keep them constant between training your system and then 
using it for prediction. They are internally used for indexing purposes. 
 
3) Training Your Machine Learning Component 

A basic pipeline should offer you one or several methods to get a machine learning component with a decent 
score performance. Those methods can vary in parametrization and runtime. The 
BasicTextClassificationPipeline offers the following. 
 
findGoodClassifier(OptimizationGoal goal, Importer importer , String... files) 

findGoodClassifierBestGuess(OptimizationGoal goal, Importer importer , String... files) 

 
The findGoodClassifier method will run a long time as it contains a very large set of search parameters. The 
findGoodClassifierBestGuess method will run during a lot shorter time but may have worse results it is 
basically the same than the other method but with a much smaller set of search parameters that commonly 
result in a good score. Just note that neither of those will result in the best classifier. 
 
The OptimizationGoal is another interface which lets you decide how the score is calculated. There are 
overloads of this methods which use the standard OptimizationGoal of averaging F1-Score over all 
encountered text classes. In some cases you might want to define different weights for your different 
textclasses (such as in our spamfilter example) that can be done by specifying an OptimizationGoal. 
 
The Importer is just an instance of the Importer you wrote in step one and the files strings are the physical 
locations of the training data. 
 
After training is done you probably want to store the ML-component so you don’t have to retrain it after each 
program restart. This method lets you do that. It is based on a working directory within the PlebML folder. So 
make sure the model name is unique. 
 
storeMachineLearningComponent(String modelName) 
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4) Loading and Using a Trained Machine Learning Component 
After having trained the component it is ready to be used. The two major methods you want to look at are 
the predict and evaluate method. The predict method is located in the abstract pipeline and works the same 
for every existing pipeline. The evaluation method however should be implemented in the core module. 
 
EvaluationResult evaluate(Importer importer, String... files) 
 
The evaluate method works on training data. You have to use training data that you did not use in the training 
process. It will predict each entry in the training data and then compare it to the expected prediction result 
within the training data files. That lets you measure how accurate your ML-component is. 
 
PredictionResult<RawObjectType, PredictionType> predict(RawObjectType data) 
 
The predict method is used for data that has no known prediction result. So that is what is used once the 
system runs and does its intended job. In the case of our text classification result the RawObjectType is 
String and the PredictionType Integer. With the enum in your Importer you can then map the Integer back to 
an enum entry. 
 
In most cases training and using the ML-component does not happen during the same runtime or even in 
the same program. That’s why it’s possible to store and load ML-components. In the last section we already 
explained how to store it and here’s how to load it again: 
 
Methods: 
loadMachineLearningComponent(String modelName) 

 

Use this if you instantiated the BasicPipeline with a custom builder. Make sure you have the same 
configuration of builder as when you trained the component and you used the correct identifier when calling 
the builders make method. 
  
Static factory methods: 
BasicTextClassificationPipeline loadTrainedEnglishLanguageDefaultPipeline 

(String identifier,  

 String modelName) 

 

BasicTextClassificationPipeline loadTrainedRomanAlphabetDefaultPipeline 

(String identifier,  

 String modelName) 

 
If you used one of the default factory methods on the pipeline you can use the respective static load methods 
to instantiate the whole pipeline for it again.   
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10.3.3 [ADVANCED] Using the Advanced Pipeline and the Abstract Pipeline 
The methods on advanced pipelines are meant for users with some expertise in machine learning and offer 
more control over the used parameters in comparison to those on the basic pipelines. 
 
For instance the AdvancedTextClassificationPipeline offers the following method: 
 
public void optimizeMLComponentCParameter 

        (OptimizationGoal goal,  

         LiblinearClassifierSolverType solver,  

         double eps,  

         double minLogC,  

         double maxLogC,  

         double cStepSize,  

         int nrOfFolds,   

         Importer importer ,  

         String... files) 
 
The class is set to use our implementation of Liblinear as its machine learning component and has some 
simple algorithms to optimize the C-hyperparameter. Instantiation works similar to the basic pipelines, 
however there are no default factory methods. 
 
An own pipeline can be easily implemented by extending the core library’s AbstractPipeline. This can be 
useful if you want to use another implementation of ML-component for instance. If you only want to add 
different workflows extend the AdvancedPipeline in your task package.  
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10.3.4 [ADVANCED] Configuring the Builder 
The Builder represents a configurable factory for the feature vector generator. The builder offers a make-
method on an abstract level which will then create the feature vector generator according to its configuration. 
Usage of the TextClassificationBuilder looks like this: 
 
TextClassificationBuilder builder = new TextClassificationBuilder(); 

builder 

    .advancedOptions() 

        .preprocessor() 

            .addTokenizer(new SuperSimpleTokenizer()) 

            .addMutation(new SimpleUserNameNormalizer()) 

            .addMutation(new SimpleURLNormalizer()) 

            .constructPreProcessorFromFeatureRequirements() 

    .advancedOptions() 

        .featureExtraction() 

            .addFeature( 

                        new NGramFeature(), 

                        new NGramConfigWrapper(1, Sets.newHashSet()), 

                        new NGramConfigWrapper(2, Sets.newHashSet()), 

                        new NGramConfigWrapper(3, Sets.newHashSet()), 

                        new NGramConfigWrapper(4, Sets.newHashSet()), 

                        new NGramConfigWrapper(1, Sets.newHashSet(), ExtractorModes.LEMMA), 

                        new NGramConfigWrapper(2, Sets.newHashSet(), ExtractorModes.LEMMA), 

                        new NGramConfigWrapper(3, Sets.newHashSet(), ExtractorModes.LEMMA), 

                        new NGramConfigWrapper(4, Sets.newHashSet(), ExtractorModes.LEMMA) 

                    ) 

            .addFeatureWithRecommendedConfigs(new NonContiguousNGram()) 

            .addFeatureWithRecommendedConfigs(new NonContiguousNGramWithPOSTagAsWildcard()) 

            .addFeature(new NrOfHashtags()) 

            .addFeature(new NrOfAllCapsToken()) 

            .addFeature(new NumberOfPOSTags()) 

            .addFeature(new GloveFeatures()) 

            .addFeature(new NrOfNegatedContexts()) 

            .addFeature(new NrOfElongatedWords()) 

            .addFeatureWithRecommendedConfigs(new LastTokenContainsPunctuation()) 

            .addFeatureWithRecommendedConfigs(new ContinuousPunctuation()) 

            .addFeature(new CMUTweetClusterFeature()) 

            .addFeature(new ScoreTotal()) 

            .addFeature(new ScorePos()) 

            .addFeature(new ScoreNeg()) 

            .addFeature(new LastTokenScore()) 

            .addFeature(new LastTokenNegScore()) 

            .addFeature(new LastTokenPosScore()) 

            .useMemoryStrategy(MemoryStrategy.HEAP) 

    .advancedOptions() 

        .parallelisation() 

            .useParallelisationStrategy(ParallelisationStrategy.SERIAL_DATA_SERIAL_FEATURE) 

    .advancedOptions() 

        .postProcessor() 

            .putPostProcessingStepForClass(ScoreTotal.class, new Sigmoid()) 

            .putPostProcessingStepForClass(ScorePos.class, new Sigmoid()) 

            .putPostProcessingStepForClass(ScoreNeg.class, new Sigmoid()) 

            .putPostProcessingStepForClass(LastTokenScore.class, new Sigmoid()) 

            .putPostProcessingStepForClass(LastTokenNegScore.class, new Sigmoid()) 

            .putPostProcessingStepForClass(LastTokenPosScore.class, new Sigmoid()) 

    .advancedOptions() 

        .outputSystemOptions() 

            .addSysOutEventListeners() 

 
Note the usage of chaining. Each option methods within a section in the advanced options returns the option 
object again. While every other option is defined within the core library, the preprocessor options vary from 
core module to core module. As for the stock text classification module the preprocessor consist of three 
stages. 
 

- Tokenization 
Split the string into one document consisting of paragraphs, sentences and tokens. 
 

- Mutation 
Sanitize the document to reduce sparsity with different normalizers.  
 

- Metadata extraction 
Add Metadata such as POS-Tags or negation scope to tokens. 
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One exception to the preprocessor settings being implemented on the coremodule is the 
constructPreprocessorFromFeatureRequirements method. This method will set a flag on the builder to try an 
abstract dependency crawling on the added feature implementation instances and add the components itself. 
The used core module has to support this or it will fail. 
 
 

10.3.5 [ADVANCED] Adding a Feature 
Each core module should have a features package with an interface extending the IFeature interface. When 
adding a new feature, create a new class extending said interface and implement the extract method. The 
interface in the core module feature package should already put the model object generic in place the second 
generic determines the class of config object you expect passed to your extract method. In case there are 
no config objects, use Void. 
 
There are a few notable things when adding a new Feature: 
 
1) Model Requirements: 
 
@RequiresComponentClass(componentClass = TweetNLPPOSTagger.class) 

public class NumberOfPOSTags implements ISentimentAnalysisDefaultVectorFormat<Void> 

 
With the @RequiresComponentClass you can instruct the dependency crawling to add a preprocessor 
component of the given class to the preprocessor. 
 
2) Accessing the Required Data: 
At least one part of the model object class representing the data after preprocessing should implement the 
IPreProcessorDataReciever interface, that’s were all the metadata is written to. 
 
t.getDataFromGlobalComponent(TweetNLPPOSTagger.class)  

//t is the IPreprocessorDataReciever 

 
This is how you can retrieve the data again. When writing the according preprocessor component you have 
to put the data in place. For more documentation see the paper references in “From here out” 
 
3) Writing Feature Vector Entries: 
extract(Document modelObj, FeatureVector<Document> vectorToWriteTo, List<Void> configs) 

 
This is the signature of the extract method of an IFeature<Document, Void> Implementation. The first 
parameter is the preprocessed data, the second is the feature vector where you have to put your entries. 
The vectorToWriteTo very much behaves like a java map, make sure your keys are unique within the feature 
class or the entry will be overwritten. The last parameter is a list of configurations that was passed in the 
builder addFeature call. 
 
Adding a Feature can be a very involved task and this is only the simplest case. For a full description look 
up the paper referenced below. 
 

10.3.6 From Here on Out 
Much more is possible with PlebML beyond pure usage of finished core modules. Entire modules can be 
developed by third party software engineers and whole machine learning engines can be linked into the core 
library. However this is only a getting started guide that should get you settled with PlebML. For a more in-
depth look at the framework, its architecture and how to extend it beyond the scope of this guide, refer to the 
paper “Developing PlebML: A modular machine learning framework” 
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10.4 Entry 3 – Feature Extraction Performance Measurements 
In this section the performance during the feature extraction is measured for different setups and datasets. 
In all figures in this chapter the left y-axis means features per second, the right y-axis means feature vectors 
per second and in the x-axis is the number of processed documents. The feature extraction starts slow, as 
many features are initialized lazily when they are first used. 

10.4.1 Spam 
In this setup features for our spam data set are extracted, this dataset is well suited for a high load test as 
each email may consist of hundreds of lines. On Machine A only the heap memory strategy is tested, as it 
has only a small network disk with very high access times, on Machine B the MEMORY_MAPPED_HASH 
and the HEAP strategy are tested. The CACHED and CACHED_HASH strategy were not tested for this 
dataset, as they are designed for smaller loads 

10.4.1.1 SER_DATA_SER_FET 
Heap, Machine A 

 
Figure 22 Spam feature extraction on Machine A, SER_DATA_SER_FET and HEAP 

Heap, Machine B 

 
Figure 23 Spam feature extraction on Machine B, SER_DATA_SER_FET and HEAP 

Memorymapped, Machine B

 
Figure 24 Spam feature extraction on Machine B, SER_DATA_SER_FET and MEMORY_MAPPED_HASH 
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10.4.1.2 SER_DATA_PAR_FET 
Heap, Machine A 

 
Figure 25 Spam feature extraction on Machine A, SER_DATA_PAR_FET and HEAP 

Heap, Machine B 

 
Figure 26 Spam feature extraction on Machine B, SER_DATA_PAR_FET and HEAP 

Memorymapped, Machine B

 
Figure 27 Spam feature extraction on Machine B, SER_DATA_PAR_FET and MEMORY_MAPPED_HASH 
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10.4.1.3 PAR_DATA_PAR_FET 
Heap, Machine A  

 
Figure 28 Spam feature extraction on Machine A, PAR_DATA_PAR_FET and HEAP 

Heap, Machine B  
This experiment did not complete successfully due to an OOME towards the end of the execution. 
 

Memory mapped, Machine B 

 
Figure 29 Spam feature extraction on Machine B, PAR_DATA_PAR_FET and MEMORY_MAPPED_HASH 
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10.4.2 Semeval 
In this setup features for the tweet sentiment data set are extracted, this dataset is well suited to test a low 
load per document, as each tweet only consist of a single line of text. On Machine A only the heap memory 
strategy is tested, as it has only a small network disk with very high access times, on Machine B all strategies 
are tested. 

10.4.2.1 SER_DATA_SER_FET 
In this section the performance of the serial feature extraction, where documents and features are processed 
serially, is tested with different memory strategies. 
 

Heap, Machine A  

 
Figure 30 Semeval feature extraction on Machine A, SER_DATA_SER_FET and HEAP 

Heap, Machine B  

 
Figure 31 Semeval feature extraction on Machine B, SER_DATA_SER_FET and HEAP 

Cached, Machine B  

 
Figure 32 Semeval feature extraction on Machine B, SER_DATA_SER_FET and CACHED 
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CachedHash, Machine B  

 
Figure 33 Semeval feature extraction on Machine B, SER_DATA_SER_FET and CACHED_HASH 

Memorymapped, Machine B  

 
Figure 34 Semeval feature extraction on Machine B, SER_DATA_SER_FET and MEMORY_MAPPED_HASH 

10.4.2.2 SER_DATA_PAR_FET 
In this section the parallel mid feature extraction, where the documents are processed serially, but all features 
are applied in parallel, is tested with different memory strategies. 
 

Heap, Machine A 

 
Figure 35 Semeval feature extraction on Machine A, SER_DATA_PAR_FET and HEAP 
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Heap, Machine B  

 
Figure 36 Semeval feature extraction on Machine B, SER_DATA_PAR_FET and HEAP 

Cached, Machine B  

 
Figure 37 Semeval feature extraction on Machine B, SER_DATA_PAR_FET and CACHED 

CachedHash, Machine B  

 
Figure 38 Semeval feature extraction on Machine B, SER_DATA_PAR_FET and CACHED_HASH 
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Memorymapped, Machine B  

 
Figure 39 Semeval feature extraction on Machine B, PARALLEL_MID and MEMORY_MAPPED_HASH 

10.4.2.3 PAR_DATA_PAR_FET 
In this section the parallel max feature extraction, where the documents and features are processed in 
parallel, is tested with different memory strategies. 
 

Heap, Machine A 

 
Figure 40 Semeval feature extraction on Machine A, PAR_DATA_PAR_FET and HEAP 

Heap, Machine B 

 
Figure 41 Semeval feature extraction on Machine B, PAR_DATA_PAR_FET and HEAP 

0

20

40

60

80

100

120

140

160

0

20000

40000

60000

80000

100000

120000

140000

160000

1
0

4
3

0

8
5

0

1
2

7
0

1
6

9
0

2
1

1
0

2
5

3
0

2
9

5
0

3
3

7
0

3
7

9
0

4
2

1
0

4
6

3
0

5
0

5
0

5
4

7
0

5
8

9
0

6
3

1
0

6
7

3
0

7
1

5
0

7
5

7
0

7
9

9
0

8
4

1
0

8
8

3
0

9
2

5
0

9
6

7
0

Features per second

FeatureVectors per second

0

50

100

150

200

0

50000

100000

150000

200000

1
0

4
3

0

8
5

0

1
2

7
0

1
6

9
0

2
1

1
0

2
5

3
0

2
9

5
0

3
3

7
0

3
7

9
0

4
2

1
0

4
6

3
0

5
0

5
0

5
4

7
0

5
8

9
0

6
3

1
0

6
7

3
0

7
1

5
0

7
5

7
0

7
9

9
0

8
4

1
0

8
8

3
0

9
2

5
0

9
6

7
0

Features per second

FeatureVectors per second

0

20

40

60

80

100

120

140

0

20000

40000

60000

80000

100000

120000

140000

1
0

4
3

0

8
5

0

1
2

7
0

1
6

9
0

2
1

1
0

2
5

3
0

2
9

5
0

3
3

7
0

3
7

9
0

4
2

1
0

4
6

3
0

5
0

5
0

5
4

7
0

5
8

9
0

6
3

1
0

6
7

3
0

7
1

5
0

7
5

7
0

7
9

9
0

8
4

1
0

8
8

3
0

9
2

5
0

9
6

7
0

Features per second

FeatureVectors per second

#T
w

ee
ts

 
#T

w
ee

ts
 

#T
w

ee
ts

 
Tweets per second 

Tweets per second 

Tweets per second 

Features per second 

Features per second 

Features per second 



Appendix  Entry 3 – Feature Extraction Performance 
Measurements 

P a g e  68 | 68 PlebML Arnold Marek & Egger Dominic 

Cached, Machine B  

 
Figure 42 Semeval feature extraction on Machine B, PAR_DATA_PAR_FET and CACHED 

CachedHash, Machine B  

 
Figure 43 Semeval feature extraction on Machine B, PAR_DATA_PAR_FET and CACHED_HASH 

Memorymapped, Machine B  

 
Figure 44 Semeval feature extraction on Machine B, PAR_DATA_PAR_FET and MEMORY_MAPPED_HASH 
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