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Abstract

With the rise of several end-to-end automatic speech recognition (ASR)
systems, great advances have been made in a wide range of subdomains.

To achieve complex tasks such as diarization and speech-to-text, most ASR-
pipeline use preliminary steps such as pre-processing, voice activity detection,
and overlapping speech detection. The goal of the following research is to in-
vestigate some of the well-known methods and features used in various stages
with their potential combination as an ensemble within a speech recognition
pipeline.

The methods are evaluated on four different corpora with different charac-
teristics and approximately 250 hours of speech data. For the Voice Activity
Detection task, an overall accuracy of 87% was achieved with a precision of
87% and recall of 92%. For Overlapping Speech Detection the best method
achieves an accuracy of 93.5%, with a precision of 66% and recall of 45%.
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1 Introduction

Automatic Speech Recognition (ASR) is the task of recognizing and translating a
speech signal to a sequence of words, utilizing a computer model or algorithm. Some
of the speech-related tasks involve speaker diarization, speaker recognition, spoken
language understanding, and sentiment analysis.

The main challenges in ASR arise due to numerous variabilities in the speech
signal. Acoustic challenges are such as variability between speakers (inter-speaker),
variability for the same speaker (intra-speaker), noise, and echo in the room. Pho-
netic challenges include articulation, elisions (grouping some words, not pronouncing
them), and words with similar pronunciation. Lastly, also linguistic challenges can
occur due to the size of the vocabulary and different word variations.

Nevertheless, great advances have been made over the last decade within ASR
and its subdomains, including the provision of pre-built solutions and toolkits for
everyday speech recognition tasks. As the main objective of the following research,
some of these well known methods are evaluated for two crucial tasks of every ASR
pipeline: Voice Activity Detection (VAD) and Overlapping Speech Detection (OVL).
As extension also showing potential combination as an ensemble within a speech
recognition pipeline.

In most of today’s end-to-end systems, as part of the process of recognizing speech,
the raw audio signal passes trough the following processing blocks before being trans-
formed to text (via decoder model):

Figure 1: Speech recognition pipeline

The pre-processing and feature extraction component takes as input the audio
signal, enhances the speech by removing noises and channel distortions, converts the
signal from time-domain to frequency-domain, and extracts salient feature vectors
that are suitable for the following acoustic models.

In the next step, voice activity detection (VAD) plays an essential role in separat-
ing an audio stream into time intervals that contain speech activity and time intervals
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where speech is absent. Robust detection of speech is necessary to exclude speech
components from the noise estimates and to reduce artifacts caused by aggressive
noise reduction during the speech.

Parallel (or overlapping) speech is referred to as a monophonic audio recording in
which at least two speakers are present. The presence of former in audio recordings
poses a great challenge for many speech applications. There have been two major
approaches to alleviating speech problems. One approach is to separate the target
or interfering speech signals by enhancing one or suppressing the other. The second
approach is to detect the presence of more than one speaker at every time instance,
which is mainly known as parallel-speech detection.

While the performance of the decoder model is crucial, the preceding processing
blocks are prerequisites for an optimal transcription and can have a high impact on
the result.

The next sections will focus on these preceding blocks, Pre-processing, and com-
mon features that are used among the evaluated methods in further stages (2), Voice
activity detection (3), and Parallel speech detection (4). For every block, different
methodologies are summarized and evaluated.

1.1 Datasets

To investigate the effectiveness of the evaluated methods, four different corpora with
different characteristics are used. Those are:

• AMI Meeting Corpus, consisting of 100 hours of scenario and non-scenario
meeting recordings using a range of signals synchronized to a common timeline.
These include close-talking and far-field microphones, individual and room-view
video cameras, and output from a slide projector and an electronic whiteboard.
The meetings were recorded in English using three different rooms with different
acoustic properties, and include mostly non-native speakers. (AMI [2006]).

• Arabic Speech Corpus, with 1813 spoken utterances recorded in south Levan-
tine Arabic (Damascian accent) using a professional studio (Aranorm [2020]).
The benefit of using these corpora is to see potential performance differences
with other languages than English.

• AVA Speech, having 46K labeled video segments with different background-
noise conditions, spanning 45 hours of data (Speech [2018]). The Dataset comes
with a set of IDs which can be used to download the video segments. Those
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video segments are then converted to wav with a sample rate of 44100 Hz.
Transcriptions come with the categories ”Clean speech”, ”Speech with noise”
and ”No Speech”. For the made experiments, clean speech and speech with
noise are pooled together to one speech class.

• The ICSI Meeting Corpus, a collection of 75 meetings including simultane-
ous multi-channel audio recordings, word-level orthographic transcriptions, and
supporting documentation – collected at the International Computer Science
Institute in Berkeley during the years 2000-2002. The meetings included are
”natural” meetings in the sense that they would have occurred anyway: they
are generally regular weekly meetings of various ICSI working teams, including
the team working on the ICSI Meeting Project. The meetings range in length
from 17 to 103 minutes, including a total of approximately 72 hours of Meeting
Room speech. (ICSI [2003]).

The important common feature among the corpora is, that they have, next to
the recording, detailed transcriptions of the words spoken with their corresponding
timestamps. This is especially crucial to check the performance of different Voice
Activity Detection methods.

Transcriptions for the named datasets come in different formats such as txt, csv
and xml, with some having multiple transcriptions per file (one for every speaker).
To make them comparable, all transcriptions are converted to the rttm format (ldc
[2003]), to align them across all the evaluations and provide a single timeline per
audio file.

After the conversion, the transcriptions are manually checked on their quality.
This was made by sampling one corpus of every dataset and slicing the audio file
according to the speech and non-speech segments provided by the transcription. The
sliced samples of non-speech segments were then combined together and manually
listened to as verification.

For the sampled files, no major quality issues were found.
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2 Pre-processing

During the pre-processing of any given audio file, there are a variety of features that
can be extracted.

Over the last few decades, audio signal processing has grown significantly in
terms of signal analysis and classification. And it has been proven that solutions
to many existing issues can be solved by integrating modern machine learning (ML)
algorithms with the audio signal processing techniques. The performance of any ML
algorithm depends on the features on which the training and testing are done. Hence
feature extraction is one of the most vital parts of a machine learning process.

In most applications, the audio signal is analyzed by means of a so-called short
term (or short-time) processing technique, according to which the audio signal is
broken into possibly overlapping short-term windows (frames) and the analysis is
carried out on a frame basis. The main reason why this windowing technique is
usually adopted is that the audio signals are non-stationary by nature, i.e. their
properties vary rapidly over time (T.Giannakopulous [2014]).
The rest of this section will show some of the main features that can be extracted
from an audio signal, which are then used by the following blocks of the ASR pipeline.

2.1 Mel frequency cepstral coefficients

The Mel frequency cepstral coefficients (MFCCs) of a signal are a small set of features
that describe the overall shape of a spectral envelope. The key objective is to mimic
the human hearing system by adjusting the signal concerning frequency and loudness.
Following further explanations are based on Rao and Manjunath [2017].

Figure 2: MFCC extraction flow
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1. Pre-emphasis: Pre-emphasis has the purpose to boost high frequencies to
make information in higher formants more available to the acoustic model. For
voiced segments like vowels, there is more energy at lower frequencies than at
higher frequency levels.

The pre-emphasis filter can be applied to a signal by using the following equa-
tion:

y(t) = x(t)− αx(t− 1)

where α is the filter coefficient with typical values between 0.9 and 1

Figure 3: Signal with pre-emphasis filter (α = 0.97)

2. Windowing: After pre-emphasis, the signal is split into short time-frames.
The reasoning behind this is that the frequencies in the signal are slowly time-
varying. Therefore, the speech analysis must be carried out on short segments
across which the speech signal is assumed to be stationary. The typical frame
is between 20ms and 30ms, with an overlap of 1

3
of the frame size.

After slicing the signal into frames, a window function such as the Hanning
window is applied to each frame.

The function for the Hanning window (α = 0.5) is:

w(n) = (1− α)− α cos( 2πn

L− 1
)
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Figure 4: Effect of windowing (time domain)

where L is the window size, and n the sliced frame.

Applying a windowing function is mainly to smooth the edges to account for the
drop off in amplitude, that else will create a lot of noise in the high-frequency
spectrum.

3. Discrete Fourier Transform (DFT): When sound is recorded we only cap-
ture the resultant amplitudes of those multiple waves. Fourier Transform is
a mathematical concept that can decompose a signal into its constituent fre-
quencies, together with their magnitude.

X(k) = x(n)
N−1∑
n=0

x(n)e−i 2π
N

kn
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where i =
√
−1 and N is the number of points used to compute the DFT.

The following plot shows the DFT of the signal displayed in Figure 3.

Figure 5: DFT of the windowed signal in the frequency domain

4. Mel filterbank: Mel spectrum is computed by passing the Fourier transformed
signal through a set of band-pass filters known as Mel filterbank. A Mel is
a unit of measure based on the human ears perceived frequency. It does not
correspond linearly to the physical frequency of the tone, as the human auditory
system does not perceive pitch linearly.

Figure 6: Mel frequency transformation
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The Mel scale is approximately linear below 1 kHz and a logarithmic above 1
kHz. The approximation of Mel from physical frequency can be expressed as

fMel = 2595 log10(1 +
f

700
)

where f is the physical frequency in Hz, and fMel denotes the perceived fre-
quency.

The final conversion of the DFT to the Mel-scale power spectrum is done by
applying triangular Mel-scale filter banks to the squared output of the DFT at
each frequency x(k)2.

Figure 7: Mel filterbank

The output for each Mel-scale power spectrum slot represents the energy from
a number of frequency bands that it covers.

s(m) =
N−1∑
k=0

Wm(k) |X(k)2|

where k is the DFT bin number and m the Mel filterbank number. Wm(k)
is the weight given to the kth energy spectrum bin, contributing to the mth

output band.
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Figure 8: Mel filterbank

5. Discrete Cosine Transform (DCT) It turns out that filter bank coefficients
computed in the previous step are highly correlated, which could be problematic
for some machine learning algorithms. Therefore, DCT is used to decorrelate
the filter bank coefficients and yield a compressed representation of the filter
banks. Before computing DCT, the Mel spectrum is usually represented on a
log scale. For most ASR applications, the resulting cepstral coefficients 2-13
are retained and the rest are discarded. MFCC is equivalent to the inverse
DFT and calculated as

c(n) =
M−1∑
m=0

log10 s(m) cos

(
π n (m− 0.5)

M

)

Figure 9: Visualization of the 12 Mel-frequency cepstral coefficients
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2.2 Spectral centroid

The spectral centroid is commonly associated with the measure of the brightness of
a sound.

Figure 10: Spectral centroid

This measure is obtained by evaluating the “center of gravity” using the Fourier
transform’s frequency and magnitude information. The individual centroid of a spec-
tral frame is defined as

c(n) =

∑N
k=1 kF (k)∑N
k=1 F (k)

where F (k) is the amplitude corresponding to bin k in DFT spectrum.

2.3 Spectral roll off

Spectral roll off measures the shape of the signal. It represents the frequency at
which a specified percentage of the total spectral energy α lies.
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Figure 11: Spectral roll off (α = 0.95)

2.4 Zero crossing rate

Represents the number of zero-crossings within a segment of the signal. A voice
signal oscillates slowly — for example, a 100 Hz signal will cross zero 100 per second,
whereas an unvoiced fricative can have 3000 zero crossings per second.

Figure 12: Zero crossing rate
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3 Voice activity detection

Voice activity detection (VAD) is the task of detecting speech regions in a given
audio stream or recording. Most of the algorithms proposed for VAD can be divided
into two processing stages:

• First, features are extracted from the noisy speech signal to achieve a repre-
sentation that discriminates between speech and noise.

• In a second stage, a detection scheme is applied to the features resulting in the
final decision.

3.1 Related literature

Numerous studies have addressed the problem of VAD in the literature. Early
works focused on energy-based features, possibly combined with the zero-crossing
rate (ZCR) (B. Kotnik [2001], F. Lamel [1981]). These features are however highly
affected in the presence of additive noise. Therefore, various other features such
as Mel-Frequency Cepstral Coefficients (MFCCs) (T. Kristjansson [2005]) have been
proposed. Some other methods are based on a statistical model of the Discrete
Fourier Transform (DFT) coefficients (J. Sohn [1999], J. Ramirez [2005]).

Finally, some studies have addressed the use of a combination of multiple features.
These works differ by the way the features are combined: using a linear combination
where the weights are trained via a minimum classification error in (Y. Kida [2005]),
a linear or a kernel discriminant analysis in (S. Soleimani [2008]) or a principal com-
ponent analysis in (S.O. Sadjadi [2013]).

The resulting acoustic information is then generally the input of a statistical
model whose goal is to draw a decision about the presence or not of speech. Proposed
approaches differ in whether they use a supervised framework or not.

For modeling, several approaches have been used: Gaussian Mixture Models
(GMM, Ng et al. [2012]), Hidden Markov Models (HMM, Harsha [2004]) which have
more and more been replaced by Neural Network approaches with tasks ranging
from VAD in a multi-room domestic environment (Ferroni et al. [2015]) to VAD for
smartphone applications (Sehgal and Kehtarnavaz [2018]).

Following are some of the more recent approaches which have been developed to
open-source toolkits:

• Pyannote audio (Bredin et al. [2020]), having a Neural Network as underlying
discrimination model.
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• Ina speech segmenter (Doukhan et al. [2018]), as a CNN-based audio segmen-
tation toolkit.

• WebrtcVAD (Google [2011]), with a Gaussian Mixture Model (GMM) ap-
proach.

The next section provides an overview of each module, together with its perfor-
mance to Voice Activity Detection.

3.2 Evaluation metrics

Evaluations were made on all datasets stated in (1.1), with the following evaluation
metrics:

Detection accuracy, where the positive class is considered as speech region. Gaps
in the inputs are considered as the negative class (e.g. non-speech regions).

Detection error rate, where false alarm is the duration of non-speech incor-
rectly classified as speech, missed detection is the duration of speech incorrectly
classified as non-speech, and total is the total duration of speech in the reference.

detection error rate =
false alarm+missed detection

total

Detection precision, computed as tp
tp+fp

, where tp is the duration of true positive

(e.g. speech classified as speech), and fp is the duration of false positive (e.g. non-
speech classified as speech).

Detection recall, computed as tp
tp+fn

, where tp is the duration of true positive (e.g.

speech classified as speech), and fn is the duration of false negative (e.g. speech
classified as non-speech).

To ensure reproducibility, pyannote.metrics (Bredin [2017]) is used as an evaluation
protocol, which has a large set of evaluation metrics for diagnostic purposes of all
modules of a typical ASR pipeline.
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3.3 Pyannote audio

Pyannote is Based on the PyTorch machine learning framework (Paszke et al. [2017]),
it provides a set of trainable end-to-end neural building blocks that can be com-
bined and jointly optimized to build pipelines for different ASR tasks. It comes
with pre-trained models covering a wide range of domains including VAD. For the
next evaluations, the model sad ami is used, which can be loaded via torch.hub
(https://pytorch.org/docs/stable/hub.html) with the repo name pyannote/pyannote−
audio.

To show the evaluation process, Figure 13 shows the ground truth time window
of a sample audio recording, picked from the AMI dataset.

Figure 13: Ground truth timeline

After processing the raw audio signal with the pre-trained model, speaker activa-
tion scores are returned which represent the models predictions on the given timeline.

Figure 14: Speaker activation scores

This scores are then binarized based on a threshold to represent the speech and
non-speech regions.

Figure 15: Speaker activation scores (Pyannote)

Features used
The features used for training the bidirectional LSTMs are SincNet learnable features
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(Ravanelli and Bengio [2018]), together with MFCCs (2.1).

Results
The following table shows the results of the preceding evaluation process, applied to
all four datasets (resulting in a total of 2131 individual audio files). The scores are
averaged over all corpora of the individual segments.

AMI Ava Arabic ICSI Mean

Accuracy 0.930 0.790 0.821 0.715 0.810
Error rate 0.087 0.394 0.180 0.320 0.245
Precision 0.976 0.827 0.998 0.981 0.946
Recall 0.937 0.770 0.821 0.693 0.805

Table 1: Pyannote VAD performance metrics

As shows, very good results are achieved in terms of precision and accuracy, lower
performance for corpora which higher noise content (AVA, ICSI).

3.4 Ina speech segmenter

Ina speech segmenter is a CNN-based audio segmentation toolkit, designed for con-
ducting gender equality studies. It splits audio signals into homogeneous zones of
speech, music and noise.
Providing, in addition to VAD, the possibility to tag signals by speaker gender (male
or female). In the experiments, zones corresponding to speech over music or speech
over noise are tagged as speech.

For a visual comparison, the figure below shows the binarized speaker activation
scores over the same sample segment picked in (3.3), where small differences can be
seen between t = 640 and t = 660.

Figure 16: Speaker activation scores (Ina)
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Features used
The system uses log-mel filterbank features (2.1), together with 4 convolutional and
4 dense layers .

Results
The following table shows the results, applied to all four datasets (resulting in a
total of 2131 individual audio files). The scores are averaged over all corpora of the
individual segments.

AMI Ava Arabic ICSI Mean

Accuracy 0.893 0.787 0.910 0.715 0.826
Error rate 0.125 0.530 0.103 0.315 0.268
Precision 0.968 0.755 0.997 0.985 0.926
Recall 0.906 0.820 0.901 0.696 0.831

Table 2: Ina VAD performance metrics

Here the main improvement with regard to the previous method is seen in the
Arabic dataset (Aranorm [2020]), having an increased accuracy of almost 10%.

3.5 Webrtc VAD

Webrtc is a project providing real-time communication capabilities for many differ-
ent applications. The project is actively maintained by the Google Webrtc Team.
It uses a Gaussian Mixture Model (GMM), which is typically much more effective
than a simple energy-threshold detector, especially in a situation with dynamic lev-
els and types of background noise. The only parameter that can be chosen for
this method is the aggressiveness parameter with integer values between 0 (least
aggressive) to 3 (most aggressive), which should reflect the threshold by which voice-
activity is done. For the experiments the parameter is set at 2 and kept fix across
all evaluations.

To evaluate successive audio frames, a padded sliding window algorithm is used.
When more than 90% of the frames in the window are voiced (as reported by the
detector), the collector triggers and begins yielding audio frames. Then the collec-
tor waits until 90% of the frames in the window are unvoiced to de trigger. The
window is padded at the front and back to provide a small amount of silence or the
beginnings/endings of speech around the voiced frames.
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Figure 17: Speaker activation scores (WebRTC)

Features used
WebRTC VAD only accepts 16-bit mono Pulse-code modulation (PCM) signals, sam-
pled at 8000, 16000, 32000 or 48000 Hz. To this purpose, the audio signal is converted
to PCM with a frame-length of 20ms before being fed to the discriminator model.

Results
The following table shows the results of experiments, applied to all four datasets
(resulting in a total of 2131 individual audio files). The scores are averaged over all
corpora of the individual segments.

AMI Ava Arabic ICSI Mean

Accuracy 0.864 0.616 0.845 0.691 0.754
Error rate 0.158 6.01 0.161 0.329 1.664
Precision 0.963 0.338 0.998 0.992 0.823
Recall 0.876 0.822 0.840 0.676 0.804

Table 3: WebrtcVAD performance metrics

Interesting to note here is that even though GMM’s should be able to handle
dynamic levels and types of noise, WebRtc performs very badly on the AVA-speech
(Speech [2018]) dataset which contains high amounts of background noises.

3.6 Ensemble

As the last step of the VAD evaluation, ensemble predictors are created as an ex-
tension of the tested toolkits. To create the ensemble, overlapping intervals are
calculated on a sliding window of 0.1s between the predictions of all three methods.
Then, the experiments are extended on the following ensembles:

• Ensemble of two: Representing the combination of predictors where at least 2
prediction-intervals are intersecting.

• Ensemble of three: Representing the combination of predictors where all of the
3 prediction-intervals are intersecting.
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The following two tables show the results of applying the ensemble predictors to
all four datasets (resulting in a total of 2131 individual audio files). The scores are
averaged over all corpora of the individual segments.

AMI Ava Arabic ICSI Mean

Accuracy 0.918 0.804 0.920 0.736 0.845
Error rate 0.098 0.337 0.091 0.297 0.206
Precision 0.974 0.900 0.998 0.991 0.966
Recall 0.926 0.753 0.910 0.710 0.825

Table 4: Ensemble of 2 predictors - performance metrics

AMI Ava Arabic ICSI Mean

Accuracy 0.902 0.795 0.980 0.815 0.873
Error rate 0.131 0.710 0.031 0.247 0.280
Precision 0.917 0.636 0.990 0.949 0.873
Recall 0.957 0.954 0.985 0.798 0.924

Table 5: Ensemble of 3 predictors - performance metrics

Here to see is that both methods show improvement in terms of accuracy over the
individual methods. While the ensemble of 2 predictors are best regarding precision,
for the application of VAD the combination of 3 predictors seems to be the go-to
method, with a recall (correctly classifying the non-speech segments as non-speech)
of 0.924 .

19



3.7 Comparing Results

This section shows more details, comparing the detection specifics of every toolkit
on a sample corpora, together with a summarizing table with the aggregated perfor-
mance on all evaluations made.

At first, a closer look is given into the individual components that form the
evaluation metrics. For this purpose, one corpus is sampled from every dataset and
the VAD scores are calculated and summarized as a confusion matrix, the numbers
representing the total duration of audio in the corresponding category.

Figure 18: Confusion matrices of the performance of one sample corpus of every
dataset

It shows here, that all of the methods have a tendency to over predict speech even
when there is none. This could be explained by the fact that all real-world datasets
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are heavily imbalanced in terms of speech vs. no-speech segments.
This, however can be heavily improved with the ensemble of the different predic-

tors. As can be seen in the figure below, especially the combination of 3 predictors
has a very good performance in terms of predicting non-speech regions.

Figure 19: Confusion matrices of the ensemble performance of one sample corpus of
every dataset

The next scores show the evaluation on all corpora of one specific dataset, grouped
by method. This should show if there are any significant differences on individual
files.

Figure 20: Boxplot comparing the accuracy on the AMI dataset
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While median performance on the AMI dataset is within a range of 85% and 95%,
pyannote outperforms the other two methods in terms of variability of the accuracy.

Figure 21: Boxplot comparing the accuracy on the Arabic dataset

For the Arabic dataset, the ensemble methods clearly outperform the single toolk-
its. For the individual methods, Ina Speech Segmenter has the overall best perfor-
mance, also in terms of variability between different corpora.

Figure 22: Boxplot comparing the accuracy on the ICSI dataset

The ICSI dataset seems to be challenging for all methods, with a median accuracy
between 70% and 75%. Interesting to note here is the single outlier that is common
across all toolkits. This could possibly be accounted to a corrupt audio file or incor-
rect transcription. The highest performance here is achieved with the combination
of all 3 methods with a median accuracy of 82%.
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Figure 23: Boxplot comparing the accuracy on the AVA dataset

On the AVA dataset, performance is similar for Ina Speech Segmenter and Pyan-
note, the latter having a IQR between 65% and 90%. WebRTC clearly having prob-
lems with this ”noisy” dataset, with an outlier at 15% accuracy.

Finally, the following table shows the mean performance of every evaluated mod-
ule over all datasets:

Pyannote Ina Webrtc Ensemble 2 Ensemble 3

Accuracy 0.810 0.826 0.754 0.845 0.873
Error rate 0.245 0.268 1.664 0.206 0.280
Precision 0.946 0.926 0.823 0.966 0.873
Recall 0.805 0.831 0.804 0.825 0.924

Table 6: Mean performance on all evaluated datasets

To conclude here is that especially for Voice Activity Detection the ensemble
methods are to be favoured over the individual toolkits.

For a practical viewpoint of the discussed methods, there are two other important
things to compare. First, the computing time that a method takes to predict the
speech and non-speech sections and secondly the possible consideration of a thresh-
old that serves as a lower boundary for regions to be not considered if they fall below
it.
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For the computing time, this can vary substantially for the evaluated toolkits.
The table below shows the mean elapsed time (in seconds) for predicting one audio
file of the corpora.

AMI Ava Arabic ICSI

Pyannote 509.69 1039.95 0.845 1725.53
Ina 49.38 26.56 0.34 93.26
Webrtc 0.89 0.95 0.02 1.58

Table 7: Computation time

As expected, for Neural-Network-based models it takes substantially more time
to compute the predictions than for the GMM-based Webrtc toolkit.

To evaluate the effectiveness of limiting the considered segments to a certain
threshold, the experiments of the beginning of this section are repeated on one sample
corpus from every dataset with the following schema applied to both the transcribed
ground truth, as well as the predictions:

For every label, yt, t = {1, 2, ...T} the duration of the segment to the correspond-
ing label is checked, for both speech-segments, as well as non-speech segments. If the
duration of the segment falls below a threshold |t − t−1| ≤ δ, δ = {0.2s, 0.5s}, then
the current label is extended by the preceding one, potentially overriding the class
attribution. The described process is depicted in Figure 24, showing the timeline
before and after applying the threshold.

Figure 24: Annotation after smoothing with δ = 0.5

Before applying this threshold approach to the sampled datasets, the amount of
affected (non-speech) segments that are calculated, together with their distribution.
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AMI Ava Arabic ICSI

Non-speech segments < 0.2s 19 0 0 689
Non-speech segments < 0.5s 57 0 2 1344
Total Non-speech segments 331 138 3 2158

Table 8: number of non-speech segments with different threshold values

Figure 25: Distribution of the non-voiced segments

Following from this analysis, the Ava-speech corpora is excluded from the thresh-
old evaluation due to the missing non-speech segments below 0.5s, the Arabic corpora
for the general low amount of segments that could lead to a non-representative result.

The table below shows the results for different threshold values. On average an
improvement of 4% can be seen when applying δ = 0.5.

No threshold δ < 0.2s δ < 0.5s

AMI 0.839 0.843 0.848
ICSI 0.672 0.692 0.733

Table 9: Results of smoothing the annotations with different threshold values
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4 Overlapping speech detection

The presence of overlapped, or parallel, speech in meetings is a common occurrence
and a natural consequence of the spontaneous multiparty conversations which arise
within meetings. This speech presents a significant challenge to ASR systems that
process audio data from meetings. In the case of speaker diarization, current state-
of-the-art systems assign speech segments to only one speaker, thus incurring missed
speech errors in regions where more than one speaker is active. Studies have shown
that the presence of overlapping speech may increase diarization error rates up to
27% (Ryanta et al. [2018]). To address this, one may either separate the speakers
in an overlapped speech segment or completely exclude these segments in the data
processing altogether. Regardless of the approach, overlapping speech segments must
first be detected in order to be addressed; this task is called overlapping speech
detection.

4.1 Related Literature

There are numerous existing studies for overlapping speech detection. Several feature
additions are proposed: Zelenák and Hernando [2011] Shows the potential of com-
plementing the overlap detection system, based on short-term spectral parameters,
with a set of prosody-based long-term features. Additional higher-level information
from the structure of a conversation such as silence and speaker change statistics are
proposed by Yella and Bourlard [2014] to improve the feature-based classifier of over-
lapping and single-speaker speech classes. The silence and speaker change statistics
are computed over a long-term window (around 3-4 seconds) and are used to predict
the probability of overlap in the window. These estimates are then incorporated as
prior probabilities of the classes.

In Geiger et al. [2013], the central idea is to use language models to detect
backchannel words and other language characteristics that typify instances of overlap.
The language models are then used within a HMM framework to assign scores to each
word in a dictionary and thus to estimate the probability that the linguistic content
reflects overlapping speech. For the domain of driver assessment in vehicle active
safety systems, Shokouhi et al. [2013] show increased accuracy by the use of spectral
harmonicity and envelope features to represent overlapped and single-speaker speech
using Gaussian mixture models (GMM).

More recently, approaches such as Sajjan et al. [2018] show that Neural Networks
such as LSTMs are effective in overlap detection, by outperforming existing results
made GMMs with the use of spectrograms instead of specialized handcrafted features.
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Despite the variety of research in the field of overlapping speech detection, the
open-source toolkits are very limited with pyannote (Bredin et al. [2020]) being the
main API providing overlapping speech detection capabilities. For the purpose of
evaluation the next section will show the performance of the existing toolkit, com-
pared with different types of neural networks.

4.2 Evaluation metrics

For overlapping speech detection, the same metrics are used as in 3.2, where the
positive class is considered as non-parallel speech (single speaker or no speech), over-
lapping speech is considered as the negative class. To calculate the overlaps, the
annotation is analyzed on a sliding window of 0.1s using the labeling principle with
yt = 1 if there is zero or one speaker at time step t and yt = 0 if there are two
speakers or more.

The process is depicted in the following figure, showing the original timeline and
the timeline considering only overlapping segments:

Figure 26: Timeline before and after calculating the overlapping segments

These overlaps are calculated as prerequisite for every corpora of the AMI and ICSI
dataset and used in the upcoming section for the performance evaluation of the stated
methods.
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4.3 Pyannote audio

As one of the inbuilt blocks of pyannote, the evaluation process is similar for the over-
lapping speech detection as it is for voice activity detection. Predictions are returned
as probabilities which are then binarized to represent the two classes: overlapping
speech and non-overlapping speech (silence included). For the evaluated datasets,
the following performance is achieved:

AMI ICSI

Accuracy 0.931 0.944
Error rate 0.586 0.963
Precision 0.771 0.560
Recall 0.599 0.302

Table 10: Pyannote OVL performance metrics

The metric of interest here is in most of the cases precision (how much of the
predicted overlaps are in fact overlapping speech). Since this is a difficult task By
taking a closer look it shows that the precision varies quite a lot between different
datasets, especially within the ICSI corpus.

Figure 27: Pyannote precision values over the two corpora
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4.4 Neural Networks

As the last approach, different types of Neural Networks are trained to have a base-
line to compare with pyannote on the task of Overlapping speech detection. The
considered network structures are: Dense and LSTM. As input for the network, 27
numerical features aligned with the description in section 2 are extracted from the
audio signal over a window of 0.1s. In detail, those are root-mean-square, chroma,
spectral centroid, spectral bandwidth, min and max spectral roll-off, zero-crossing
rate, and 20 mfccs.

The AMI and ICSI corpora are split into a training and test part with proportion
7:3, resulting in a total of 172 training datasets and 73 test datasets. For the hyper-
parameters, a grid-search is performed on the training set, resulting in the following
parameters for each network:

Dense LSTM

Activation tanh relu
Batch size 40 60
Dropout rate 0.2 0.4
Kernel initialization uniform glorot uniform
Learning rate 0.01 0.001

Table 11: Network parameters

Regarding layer structure, 4 layers are used for each network with 256 Neurons
for the hidden layers and a binary dense layer as output layer. For the evaluated
datasets, the following performance is achieved:

Dense Network

AMI ICSI

Accuracy 0.711 0.606
Error rate 0.288 0.393
Precision 0.302 0.145
Recall 0.703 0.918

Table 12: Dense Network precision values over the two corpora
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LSTM Network

AMI ICSI

Accuracy 0.818 0.918
Error rate 0.586 0.341
Precision 0.428 0.192
Recall 0.698 0.433

Table 13: LSTM network OVL performance metrics

Both methods show a clear decrease in detecting overlapping speech in comparison
to the pyannote toolkit. In particular for training an own network the imbalance
between the positive and negative class is a difficult challenge to handle and could
be a prospect for further research.

5 Conclusion

This research presented an overview of the available toolkits for Voice Activity De-
tection and Overlapping Speech Detection, together with some of the main features
that are extracted from the raw audio signal and used within the different models.

Evaluating the best-performing methods, the ensemble method of combining 3
different classifiers has proven the most successful for VAD, with an overall accuracy
of 87% and a recall correctly classifying the non-speech segments as non-speech) of
0.924.

For Overlapping Speech Detection, pyannote shows already promising results with
a precision rate of 66% over basic Neural Networks, although further research has to
be made on other types of methods to get a representative comparison.
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