Computer Vision, Perception and Cognition Group

«KI ist DIE Schlüsseltechnologie des digitalen Wandels in allen Branchen und Sektoren und sie hat starke Auswirkungen auf unsere Gesellschaften. Darum leistet unsere Forschung wichtige Beiträge zu robusten und vertrauenswürdigen KI-Methoden, und wir vermitteln mit Begeisterung deren sichere Umsetzung und Anwendung.»
Expertise

- Mustererkennung mit Deep Learning
- Maschinelle Wahrnehmung, Computer Vision und Sprechererkennung
- Entwicklung neuronaler Systeme
Die Computer Vision, Perception and Cognition-Gruppe forscht über Mustererkennung und arbeitet an einer Vielzahl von Aufgaben mit Bild-, Ton- oder allgemein Signaldaten. Wir befassen uns mit der Methodik der tiefen neuronalen Netze (Deep Neural Networks) und des Reinforcement Learning, inspiriert durch biologisches Lernen. Jede unserer Aufgaben hat ihr eigenes Lernziel (z. B. Erkennung, Klassifizierung, Clustering, Segmentierung, Novelty Detection, Steuerung) und ihren eigenen Anwendungsfall (z. B. vorausschauende Instandhaltung (Predictive Maintenance), Sprechererkennung für Multimedia-Indizierung, Dokumentanalyse, optische Notenerkennung, Computer Vision für industrielle Qualitätskontrolle, automatisiertes maschinelles Lernen, Deep Reinforcement Learning für automatisierte Spiele oder Gebäudeleittechnik). Diese werfen ihrerseits ein Licht auf verschiedene Aspekte des Lernprozesses. Wir nutzen diese Erfahrungen, um allgemeinere KI-Systeme zu kreieren, die auf neuronalen Architekturen basieren.
Angebote
- Einblick: Keynotes, Trainings
- KI-Beratung: Workshops, Expertenunterstützung, Beratung, Technikfolgenabschätzung
- Forschung und Entwicklung: kleine bis grosse Gemeinschaftsprojekte, Drittmittelforschung, studentische Projekte, praxiserprobte Prototypen
Team
Projekte
- Vorherige Seite
- Seite 01
- Seite 02
- Seite 03
- Seite 04
-
SODES: Swiss Open Data Exploration System
In den letzten Jahren haben nationale und internationale Institutionen, Regierungen und NGOs große Datenmengen öffentlich zugänglich gemacht: Es gibt buchstäblich Tausende von offenen Datenquellen, mit Temperaturmessungen, Börsenkursen, Bevölkerungs- und Einkommensstatistiken etc. Die meisten offenen Datensätze ...
-
Talkalyzer
Ziel dieses Projektes ist, einen Demonstrator in Form einer Android-App zu entwickeln, welcher die Redeanteile zweier Gesprächspartner in Echtzeit visualisieren kann. Damit soll es z.B. einem Vorgesetzten möglich sein zu erkennen, ob er in einem Mitarbeitergespräch zu viel redet oder ob das Gespräch ausgeglichen ...
Publikationen
-
Tuggener, Lukas; Emberger, Raphael; Ghosh, Adhiraj; Sager, Pascal; Satyawan, Yvan Putra; Montoya, Javier; Goldschagg, Simon; Seibold, Florian; Gut, Urs; Ackermann, Philipp; Schmidhuber, Jürgen; Stadelmann, Thilo,
2023.
Real world music object recognition.
Transactions of the International Society for Music Information Retrieval.
Verfügbar unter: https://doi.org/10.21256/zhaw-28719
-
Segessenman, Jan; Stadelmann, Thilo; Andrew, Davison; Oliver, Dürr,
2023.
Assessing deep learning : a work program for the humanities in the age of artificial intelligence.
SSRN.
Verfügbar unter: https://doi.org/10.21256/zhaw-28651
-
Luley, Paul-Philipp; Deriu, Jan Milan; Yan, Peng; Schatte, Gerrit A.; Stadelmann, Thilo,
2023.
From concept to implementation : the data-centric development process for AI in industry [Paper].
In:
2023 10th IEEE Swiss Conference on Data Science (SDS).
10th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 22-23 June 2023.
IEEE.
S. 73-76.
Verfügbar unter: https://doi.org/10.1109/SDS57534.2023.00017
-
Emberger, Raphael; Boss, Jens Michael; Baumann, Daniel; Seric, Marko; Huo, Shufan; Tuggener, Lukas; Keller, Emanuela; Stadelmann, Thilo,
2023.
Video object detection for privacy-preserving patient monitoring in intensive care [Paper].
In:
2023 10th IEEE Swiss Conference on Data Science (SDS).
10th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 22-23 June 2023.
IEEE.
S. 85-88.
Verfügbar unter: https://doi.org/10.1109/SDS57534.2023.00019
-
Amirian, Mohammadreza; Montoya-Zegarra, Javier A.; Herzig, Ivo; Eggenberger Hotz, Peter; Lichtensteiger, Lukas; Morf, Marco; Züst, Alexander; Paysan, Pascal; Peterlik, Igor; Scheib, Stefan; Füchslin, Rudolf Marcel; Stadelmann, Thilo; Schilling, Frank-Peter,
2023.
Medical Physics.
Verfügbar unter: https://doi.org/10.1002/mp.16405
Sonstige Veröffentlichungen
Wann | Art | Titel |
---|---|---|
2023 | Extended Abstract | Thilo Stadelmann. KI als Chance für die angewandten Wissenschaften im Wettbewerb der Hochschulen. Workshop (“Atelier”) at the Bürgenstock-Konferenz der Schweizer Fachhochschulen und Pädagogischen Hochschulen 2023, Luzern, Schweiz, 20. Januar 2023 |
2022 | Extended Abstract | Christoph von der Malsburg, Benjamin F. Grewe, and Thilo Stadelmann. Making Sense of the Natural Environment. Proceedings of the KogWis 2022 - Understanding Minds Biannual Conference of the German Cognitive Science Society, Freiburg, Germany, September 5-7, 2022. |
2022 | Open Research Data | Felix M. Schmitt-Koopmann, Elaine M. Huang, Hans-Peter Hutter, Thilo Stadelmann, und Alireza Darvishy. FormulaNet: Ein Benchmark-Datensatz für die Erkennung mathematischer Formeln. Eine ungelöste Teilaufgabe der Dokumentenanalyse ist die Erkennung mathematischer Formeln (MFD). Forschungen von uns und anderen haben gezeigt, dass bestehende MFD-Datensätze mit Inline- und Display-Formel-Etiketten klein sind und eine unzureichende Etikettierungsqualität aufweisen. Es besteht daher ein dringender Bedarf an Datensätzen mit besserer Beschriftungsqualität für die zukünftige Forschung im Bereich MFD, da diese einen großen Einfluss auf die Leistung der darauf trainierten Modelle haben. Wir stellen eine fortschrittliche Etikettierungspipeline und einen neuen Datensatz namens FormulaNet vor. Mit über 45.000 Seiten ist FormulaNet unserer Meinung nach der größte MFD-Datensatz mit Inline-Formelbeschriftungen. Unser Datensatz soll bei der Bewältigung der MFD-Aufgabe helfen und kann die Entwicklung neuer Anwendungen ermöglichen, wie z. B. die Zugänglichkeit mathematischer Formeln in PDFs für sehbehinderte Benutzer von Bildschirmlesegeräten. |
2020 | Open Research Data | Lukas Tuggener, Yvan Putra Satyawan, Alexander Pacha, Jürgen Schmidhuber, and Thilo Stadelmann, DeepScoresV2. The DeepScoresV2 Dataset for Music Object Detection contains digitally rendered images of written sheet music, together with the corresponding ground truth to fit various types of machine learning models. A total of 151 Million different instances of music symbols, belonging to 135 different classes are annotated. The total Dataset contains 255,385 Images. For most researches, the dense version, containing 1714 of the most diverse and interesting images, is a good starting point. |