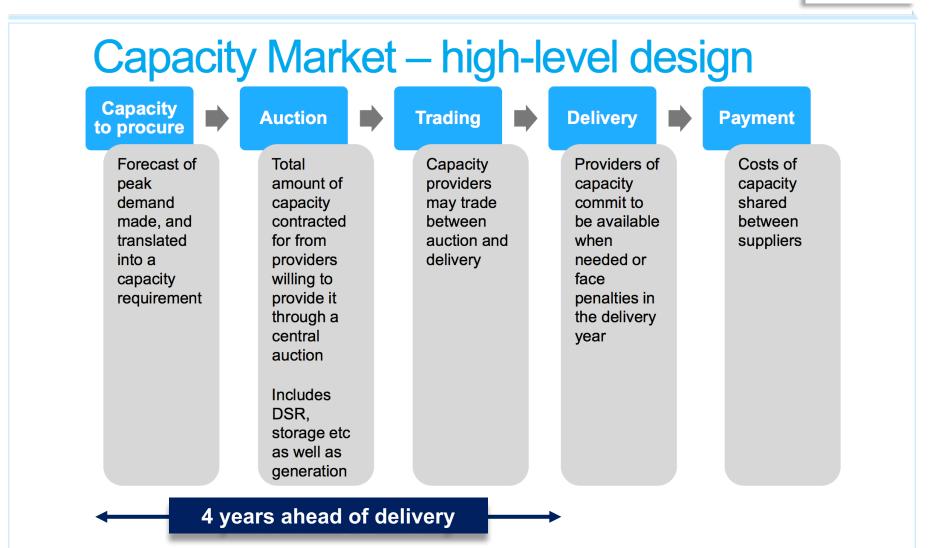
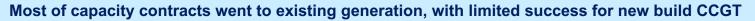
Environmental Change Institute

Forward capacity market and electricity demand reduction – Case of the UK



CEE Inaugural Conference ZHAW 22 September 2017

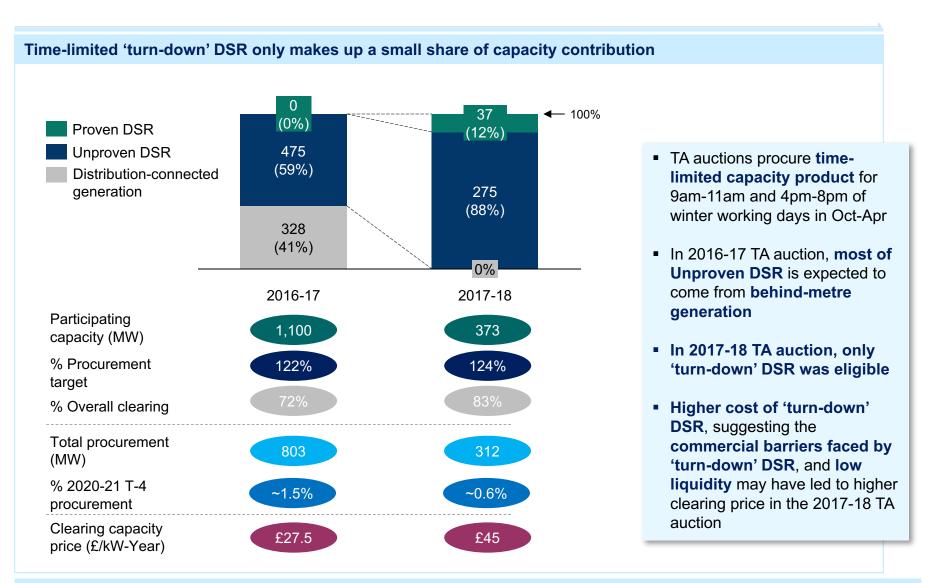
MECHANISM


Forward capacity market uses auctions to procure resources to meet projected peak demand and reserve requirements in future years

CASE OF GB

GB CAPACITY MARKET

While participation of new build and DSR shows some growth, existing generation capacity has dominated in clearing all T-4 auctions


				-			◀━ 100%
CCGT							l
Nuclear		45%		47%		43%	l
Coal/Biomass	i						l
CHP		16%		400/		15%	l
OCGT				16%		12%	l
Interconnecto	r and hydro	19%		10% 9%		- 8%	
DSR		9%	4%	5% 6%	40/	7%	-6%
Storage		5% - 1%	0%	6%	1% ====	6% 3%	
		2018-19		2019-20		2020-21	
Total procuremer (GW)	nt	49.3		46.4		52.4	
% Overall clearin	g 📢	76%		80%		75%	
% New build CC0 clearing	GT	25%		18%		12%	
Capacity price (£/kW-Year)		£19.4		£18		£22.5	
% Cleared capacity	Existing generation*	64%		95%		89%	
	Refurbishing**	30%		0.2%		2%	
	New build generation	5%		4%		7%	
-	DSR	0.4%		1%		3%	

*Existing generation and existing interconnection **Returbishing generation and pre-refurbishment ***Trafford (1.66 GW) CCGT was awarded contract in T-4 2018-19 but was terminated

- Eligible generation not supported by renewable incentives or long-term STOR contract
- Most of contracts are awarded to existing generation, with limited success for new-build CCGT. In T4 2020-21, only 1.2GW of new build CCGT has been brought forward***, while 1.3GW of new build distributed generation won capacity agreements
- Growth in DSR capacity, from 174MW for 2018-19 to 1.4GW for 2020-21. However, most of its growth is believed to come from behind-metre generation
- For the first time, new build battery storage (~500MW) cleared the T-4 auction for 2020-21

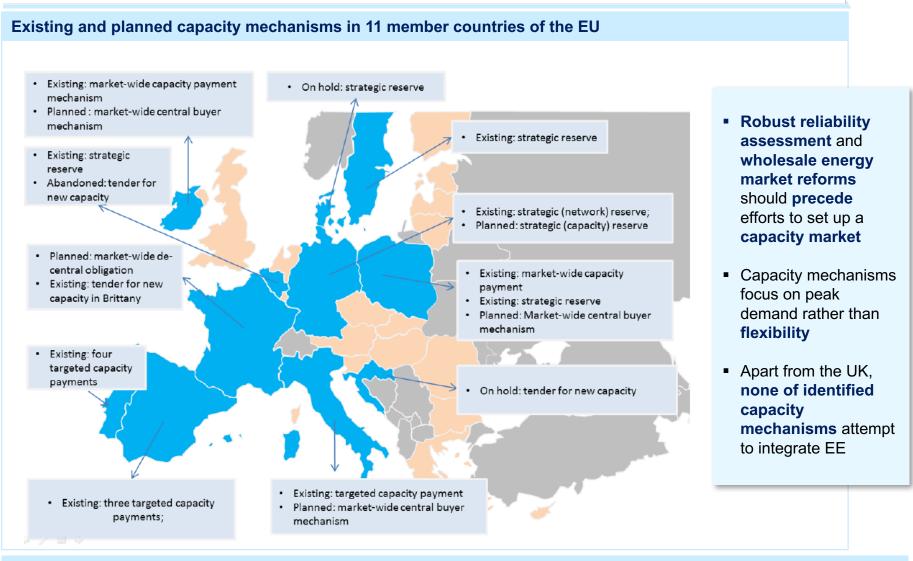
GB CAPACITY MARKET

Transitional Arrangement (TA) auctions have only limited success in stimulating 'turn-down' demand-side response (DSR)

SUMMARY

Forward capacity market can be a useful tool for ensuring reliability, but it is not a 'silver bullet' to promote capacity adequacy and demand-side resources

Key questions	Key points		
Why do we need a capacity mechanism?	 Capacity mechanisms can be one tool helping ensure adequat capacity to meet projected peak demand and reserve margin 		
	 However, they are preferred to be used to address 'residual' market design inefficiencies or complement reforms in wholesale electricity markets 		
	 Focusing on peak demand, capacity mechanisms are not necessarily well aligned with the need of flexible capacity 		
<i>How should we design a capacity mechanism to mimic a free market?</i>	 An efficient mechanism should allow market-wide participation of diverse resource types, including demand-side resources 		
	 Evidence exists that participation of EE helps reduce the cost of capacity and complements DSR in unlocking the potential of demand side 		
What is the effect of capacity market on energy efficiency (EE)?	 At best, forward capacity market can only have a limited role in stimulating EE investment, due to weak value proposition and complex procedure for accessing this potential funding source 		
	 Dedicated regulatory funding to support EE investment is needed 		

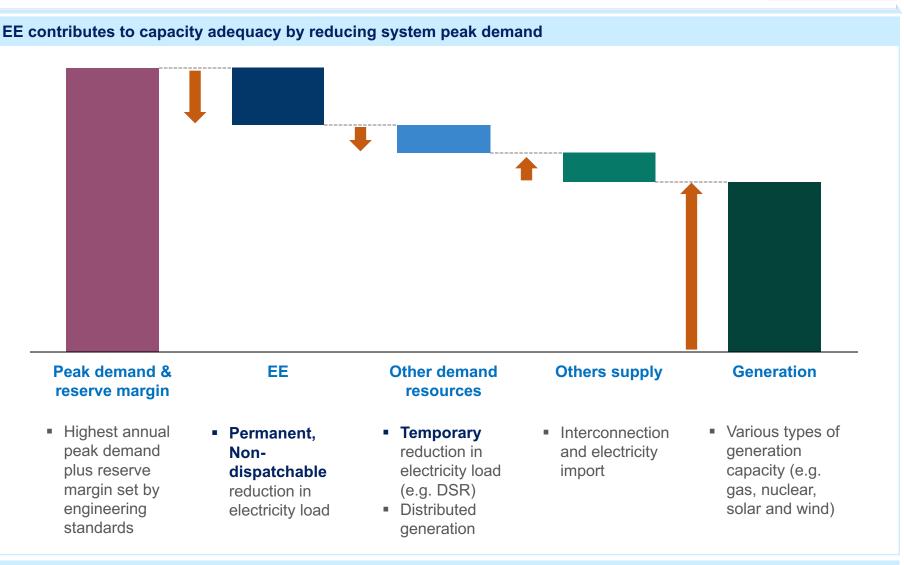

NEED OF CAPACITY MECHANISM

Concern about future capacity adequacy fuels the debate on capacity mechanism in Europe

Factors		Descriptions		
FALLING	Weakened profitability of thermal generation	 Demand growing slowly/declining. In EU, annual electricity generation between 2008 and 2013 decreased by 5%. 		
AHEAD		 Increased installed capacity and growth of intermittent renewables with low marginal cost lead to lower wholesale electricity price and lower utilisation of thermal generation 		
		Impact on gas capacity is more pronounced than coal		
- Step.	Planned retirement of coal and nuclear generation due to age	 Most nuclear plants will be over 30 years old by 2020 and little investment for new nuclear generation is planned 		
	and environmental regulation	Environmental policies lead to gradual phase-out of coal plants		
	Market design imperfections creating	 Imperfections in market design undermining the formation of efficient market price: 		
A.	investment barriers	 Price cap not based on Value of Lost Load (VoLL) or set much lower than VoLL 		
		Out-of-market reliability mechanismInefficient bidding zone delineation		
		 Uncertainties about future market and regulatory design 		

NEED OF CAPACITY MECHANISM

Different capacity mechanisms are created in European countries but they are not 'silver bullets'

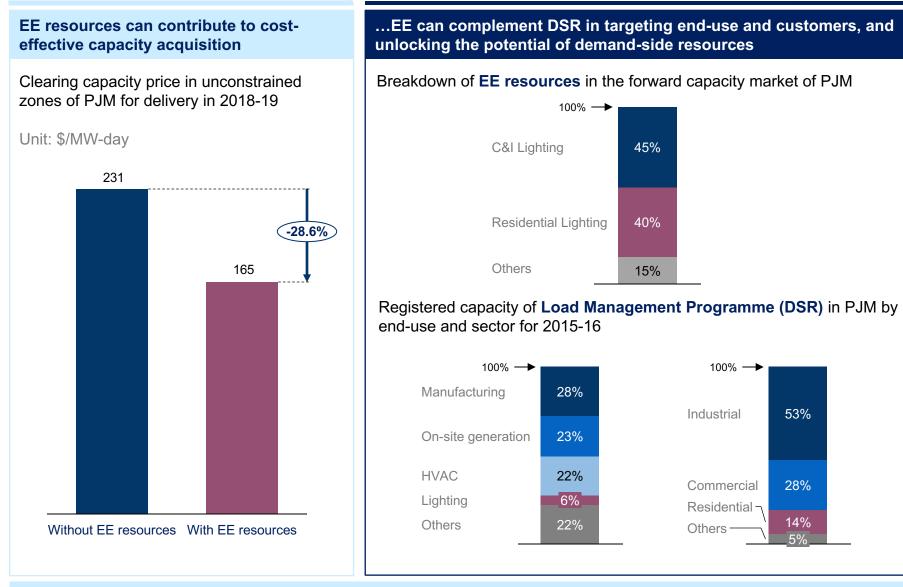


SOURCE: EC (2016)

MECHANISM DESIGN

Capacity markets should allow the participation of various resources, particularly that of demand-side resources

ILLUSTRATIVE


Forward capacity markets show the potential of procuring EE as a capacity resource...

	⊅ ∕pjm'	ISO rew england	national grid Electricity Market Reform
	PJM	ISO-NE	GB Capacity Market
Start Year	 2012 	• 2010	• 2015
Peaking season	 Summer 	 Summer 	 Winter
EE in main auctions	■ Yes	▪ Yes	 Electricity Demand Reduction (EDR) Pilot
Forward period	 3 years 	 3 years 	 1 year (EDR)
Capacity product defined as the average demand reduction on working days in	 Basic Capacity (2012-20): 3-8pm in Jun-Aug Capacity Performance (2018-): Lower of 3-8pm in Jun-Aug, and 8-9am and 7-8pm in Jan-Feb 	 On-Peak: 1pm-5pm in Jun-Aug and 5pm-7pm in Dec-Jan Seasonal peak: During real-time system peak hours¹ in Jun-Aug and Dec-Jan 	 4-8pm in Nov-Feb

OUTCOMES – DEMAND RESOURCES

Procurement of EE as a capacity resource is valuable...

CASE OF PJM

OUTCOMES – DEMAND RESOURCES


...but the forward capacity market may play only a limited role in promoting EE investment

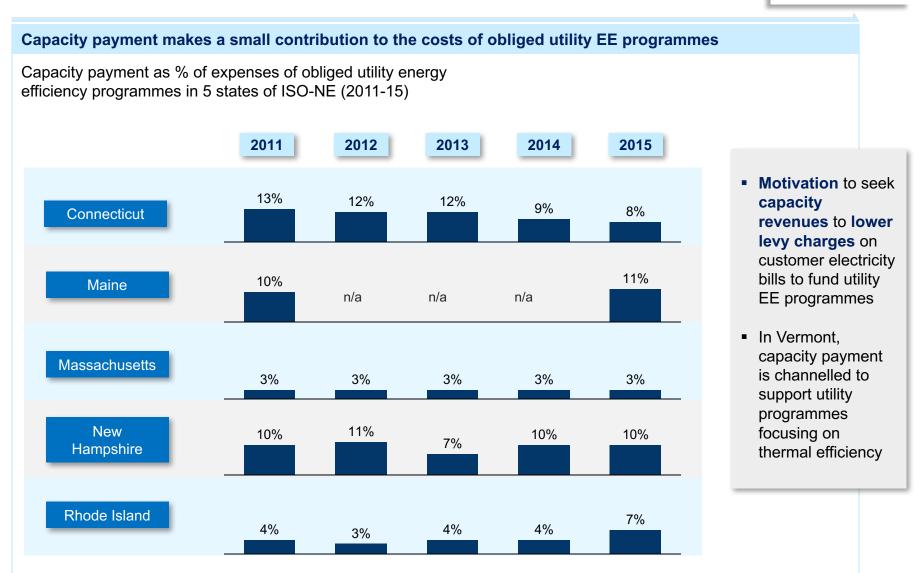
X 'Follow-up'

SUMMARY

Val	ue proposition of the forward	capacity market is weak, and its desig	gns pose barriers for participation…		
	Key design features of the forward capacity market	Limitations and/or barriers	Implications for promoting EE investment		
A	Incentives based on peak demand reduction	 EE investment is rewarded for its capacity value only Peak- and energy-savings are not well aligned 	 Strength of financial incentives is weak Other funding sources are necessary to promote EE investment Misalignment with customer payback and policy objective of energy savings 		
B	Incentives based on verified savings	 Customers bear financial risks of not delivering committed savings, likely leading to risk aversion Complex participation process Customers responsible for EM&V, leading to higher requirement for internal resources 	 Tendency to focus on simple measures Certain customer segments (e.g. residential or smaller organisations) may not be able to participate 		
	Competitive auctions	 Risk of not clearing auctions and obtaining financial incentives 	 Deterrent for proposing and bidding projects 		
	Minimum project sizes	Higher requirement for aggregating otherwise distributed EE resources	 Absence of viable aggregation model may lead to 'missed opportunities' for EE improvement 		

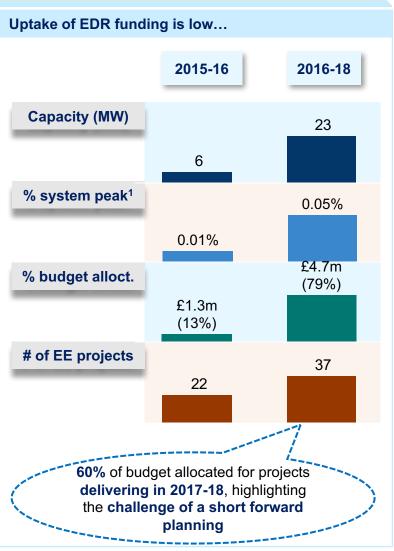
Participation of EE is primarily driven by regulatory obligation to improve EE at customer end-uses Case OF PJM AND ISO-NE

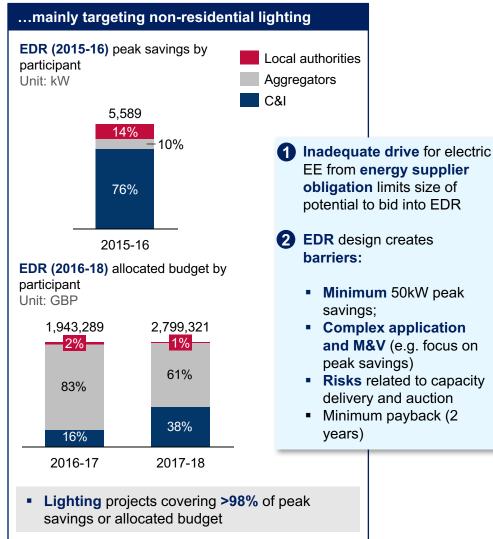
Regulatory obligation and treatment of EE are key


- Participation mainly from obliged utilities – in ISO-NE, >94% of EE in main auctions for 2012-20 is from obliged utilities¹, with share growing to 99% for 2015-19
- Strength of regulatory obligation for EE – level of utility obligation for energy savings tends to higher in states covered by ISO-NE (median 1.6% of annual sales in 2014), as opposed to those by PJM (median 0.6% of annual sales in 2014)

Shorter eligibility of EE in PJM limiting financial returns – in PJM, EE resources are eligible to participate for up to 4 years, whereas in ISO-NE, resources are eligible as long as they are operational

1 Includes 'quasi-government' entities obliged to undertake energy efficiency projects


A Capacity market may not be adequate as a primary funding to drive EE


CASE OF ISO-NE

B Electricity Demand Reduction (EDR) Pilot in the UK is limited in incentivising EE projects

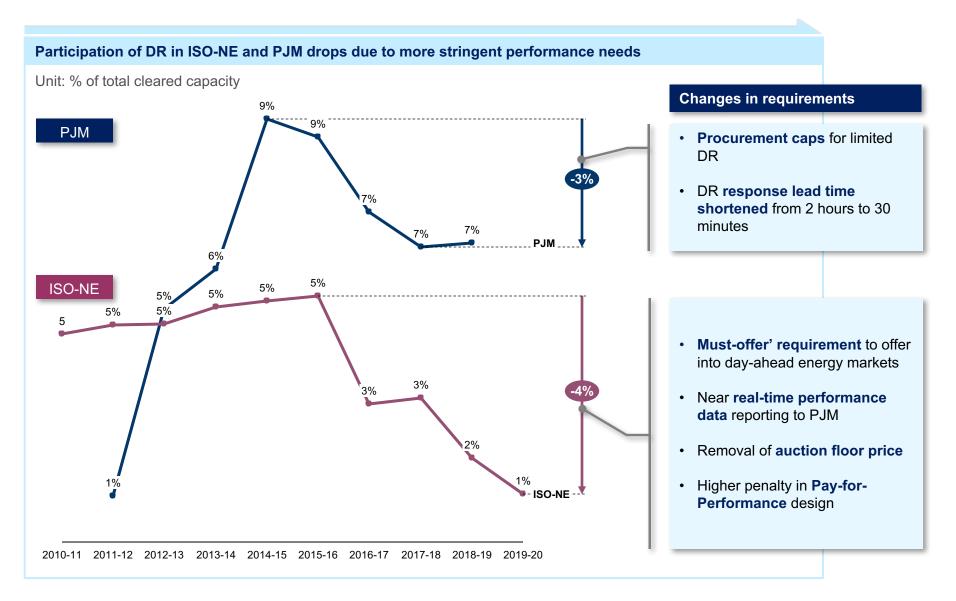
CASE OF GB

1 GB system peak demand at ~50GW

SOURCE: DECC; Liu (2017); Stakeholder interviews

BACK UP

DR AND EE IN CAPACITY MARKET


DR and EE differ in their capacity delivery and drivers

Deep-dive' in next page

	Energy efficiency	Demand response
Nature	 Permanent peak savings 	 Temporary peak savings
Key Parameters	 Average demand reduction during peak hours 	 Speed, duration and frequency of reduction
Driver	 Regulatory energy supplier obligations 	 Response requirements Capacity price

DR AND EE IN CAPACITY MARKET

High performance requirements limit potential for DR participation

